【題目】分形幾何學是數(shù)學家伯努瓦·曼德爾布羅在世紀年代創(chuàng)立的一門新的數(shù)學學科,它的創(chuàng)立為解決傳統(tǒng)科學眾多領域的難題提供了全新的思路.按照如圖所示的分形規(guī)律可得如圖乙所示的一個樹形圖:
若記圖乙中第行白圈的個數(shù)為,則__________.
科目:高中數(shù)學 來源: 題型:
【題目】2015年12月,京津冀等地數(shù)城市指數(shù)“爆表”,北方此輪污染為2015年以來最嚴重的污染過程,為了探究車流量與的濃度是否相關,現(xiàn)采集到北方某城市2015年12月份某星期星期一到星期日某一時間段車流量與的數(shù)據(jù)如表:
時間 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期七 |
車流量(萬輛) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
的濃度(微克/立方米) | 28 | 30 | 35 | 41 | 49 | 56 | 62 |
(1)由散點圖知與具有線性相關關系,求關于的線性回歸方程;
(2)(i)利用(1)所求的回歸方程,預測該市車流量為8萬輛時的濃度;
(ii)規(guī)定:當一天內(nèi)的濃度平均值在內(nèi),空氣質(zhì)量等級為優(yōu);當一天內(nèi)的濃度平均值在內(nèi),空氣質(zhì)量等級為良,為使該市某日空氣質(zhì)量為優(yōu)或者為良,則應控制當天車流量在多少萬輛以內(nèi)?(結果以萬輛為單位,保留整數(shù))
參考公式:回歸直線的方程是,其中, .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐的底面為菱形 且∠ABC=120°,PA⊥底面ABCD,AB=2,PA=,
(1)求證:平面PBD⊥平面PAC;
(2)求三棱錐P--BDC的體積。
(3)在線段PC上是否存在一點E,使PC⊥平面EBD成立.如果存在,求出EC的長;如果不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】上周某校高三年級學生參加了數(shù)學測試,年部組織任課教師對這次考試進行成績分析.現(xiàn)從中抽取80名學生的數(shù)學成績(均為整數(shù))的頻率分布直方圖如圖所示.
(Ⅰ)估計這次月考數(shù)學成績的平均分和眾數(shù);
(Ⅱ)假設抽出學生的數(shù)學成績在段各不相同,且都超過94分.若將頻率視為概率,現(xiàn)用簡單隨機抽樣的方法,從95,96,97,98,99,100這6個數(shù)字中任意抽取2個數(shù),有放回地抽取3次,記這3次抽取中恰好有兩名學生的數(shù)學成績的次數(shù)為,求的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】公元年左右,我國數(shù)學家劉徽發(fā)現(xiàn)當圓內(nèi)接正多邊形的邊數(shù)無限增加時,多邊形的面積可無限逼近圓的面積,并創(chuàng)立了“割圓術”劉徽得到了圓周率精確到小數(shù)點后兩位的近似值,這就是著名的“徽率”.如圖是利用劉徽的“割圓術”思想設計的一個程序框圖,其中表示圓內(nèi)接正多邊形的邊數(shù),執(zhí)行此算法輸出的圓周率的近似值依次為 ( )
(參考數(shù)據(jù): )
A. 2.598,3,3.1048 B. 2.598,3,3.1056
C. 2.578,3,3.1069 D. 2.588,3,3.1108
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義:如果函數(shù)在定義域內(nèi)給定區(qū)間上存在(),滿足,則稱函數(shù)是上的“平均值函數(shù)”, 是它的一個均值點.如是上的平均值函數(shù),0就是他的均值點.
(1)判斷函數(shù)在區(qū)間上是否為平均值函數(shù)?若是,求出它的均值點;若不是,請說明理由;
(2)若函數(shù)是區(qū)間上的平均值函數(shù),試確定實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】潮州統(tǒng)計局就某地居民的月收入調(diào)查了人,并根據(jù)所得數(shù)據(jù)畫了樣本的頻率分
布直方圖(每個分組包括左端點,不包括右端點,如第一組表示收入在)。
(1)求居民月收入在的頻率;
(2)根據(jù)頻率分布直方圖算出樣本數(shù)據(jù)的中位數(shù);
(3)為了分析居民的收入與年齡、職業(yè)等方面的關系,必須按月收入再從這人中分層抽樣方法抽出人作進一步分析,則月收入在的這段應抽多少人?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中, 平面, , 平分, 為的中點, , .
(1)證明: 平面.
(2)證明: 平面.
(3)求直線與平面所成的角的正切值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com