【題目】已知函數(shù)f(x)=x﹣ ,g(x)=x2﹣2ax+4,若任意x1∈[0,1],存在x2∈[1,2],使f(x1)≥g(x2),求實(shí)數(shù)a的取值范圍.
【答案】解:由于f′(x)=1+ >0,因此函數(shù)f(x)在[0,1]上單調(diào)遞增,
所以x∈[0,1]時(shí),f(x)min=f(0)=﹣1.
根據(jù)題意可知存在x∈[1,2],
使得g(x)=x2﹣2ax+4≤﹣1,即x2﹣2ax+5≤0,即a≥ 能成立,
令h(x)= ,則要使a≥h(x)在x∈[1,2]能成立,只需使a≥h(x)min ,
又函數(shù)h(x)= 在x∈[1,2]上單調(diào)遞減,
所以h(x)min=h(2)= ,故只需a≥
【解析】若任意x1∈[0,1],存在x2∈[1,2],使f(x1)≥g(x2),即存在x∈[1,2],使得g(x)=x2﹣2ax+4≤﹣1,即x2﹣2ax+5≤0,解得實(shí)數(shù)a的取值范圍.
【考點(diǎn)精析】本題主要考查了二次函數(shù)的性質(zhì)和利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識(shí)點(diǎn),需要掌握當(dāng)時(shí),拋物線開口向上,函數(shù)在上遞減,在上遞增;當(dāng)時(shí),拋物線開口向下,函數(shù)在上遞增,在上遞減;一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校100位學(xué)生期中考試語文成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:、、、、.
(1)求圖中的值;
(2)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生語文成績的平均分;
(3)若這100名學(xué)生的語文成績某些分?jǐn)?shù)段的人數(shù)()與數(shù)學(xué)成績相應(yīng)分?jǐn)?shù)段的人數(shù)()之比如下表所示,求數(shù)學(xué)成績?cè)?/span>之外的人數(shù).
分?jǐn)?shù)段 | ||||
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線段AD上一點(diǎn),AM=2MD,N為PC的中點(diǎn).
(1)證明:MN∥平面PAB;
(2)求直線AN與平面PMN所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=|x﹣1|﹣2|x+1|的最大值為m.
(Ⅰ)求m;
(Ⅱ)若a,b,c∈(0,+∞),a2+2b2+c2=m,求ab+bc的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐,底面為菱形, 平面, , 分別是的中點(diǎn).
(Ⅰ)證明: ;
(Ⅱ)若為上的動(dòng)點(diǎn), 與平面所成最大角的正切值為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè):實(shí)數(shù)滿足,其中;:實(shí)數(shù)滿足.
(1)若,且為真,為假,求實(shí)數(shù)的取值范圍;
(2)若是的充分不必要條件,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知經(jīng)過原點(diǎn)的直線與橢圓交于兩點(diǎn),點(diǎn)為橢圓上不同于的一點(diǎn),直線的斜率均存在,且直線的斜率之積為.
(1)求橢圓的離心率;
(2)若,設(shè)分別為橢圓的左、右焦點(diǎn),斜率為的直線經(jīng)過橢圓的右焦點(diǎn),且與橢圓交于兩點(diǎn),若點(diǎn)在以為直徑的圓內(nèi)部,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)訄A恒過點(diǎn),且與直線: 相切.
(1)求動(dòng)圓圓心的軌跡的方程;
(2)探究在曲線上,是否存在異于原點(diǎn)的兩點(diǎn), ,當(dāng)時(shí),直線恒過定點(diǎn)?若存在,求出該定點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為,直線.
(1)若拋物線和直線沒有公共點(diǎn),求的取值范圍;
(2)若,且拋物線和直線只有一個(gè)公共點(diǎn)時(shí),求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com