已知方程x2+y2-2mx+2my-2=0表示的曲線恒過第三象限的一個(gè)定點(diǎn)A,若點(diǎn)A又在直線l:mx+ny+1=0上,則當(dāng)正數(shù)m,n的乘積取得最大值時(shí)直線l的方程是
 
考點(diǎn):直線和圓的方程的應(yīng)用
專題:計(jì)算題
分析:先根據(jù)方程x2+y2-2mx+2my-2=0,確定第三象限的定點(diǎn)A的坐標(biāo),代入直線l:mx+ny+1=0上,利用基本不等式,可求正數(shù)m,n的乘積的最大值,故可求直線方程.
解答: 解:∵方程x2+y2-2mx+2my-2=0
∴x2+y2-2-2m(x-y)=0
解方程組
x2+y2-2=0
x-y=0

x=1
y=1
x=-1
y=-1

∵A在第三象限
∴A(-1,-1)
∵點(diǎn)A在直線l:mx+ny+1=0
∴m+n=1
∵m>0,n>0
mn≤(
m+n
2
)
2
=
1
4

當(dāng)且僅當(dāng)m=n=
1
2
時(shí),正數(shù)m,n的乘積取得最大值
∴直線l:mx+ny+1=0為直線l:x+y+2=0
故答案為:x+y+2=0
點(diǎn)評:本題以圓的方程為載體,考查定點(diǎn)問題,考查基本不等式的運(yùn)用,解題的關(guān)鍵是根據(jù)圓的方程確定定點(diǎn)的坐標(biāo).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在區(qū)間(0,1)內(nèi)任取兩個(gè)實(shí)數(shù),則它們的和大于
1
2
而小于
3
2
的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2+ax+a
ex

(Ⅰ)若函數(shù)f(x)在x=0處的切線l0與x=1處的切線l1相互平行,求實(shí)數(shù)a的值及此時(shí)函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若0<a<4,求證:exf(x)<(a+1+aexlnx)(x2+ax+a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有1000人患某種病的概率為0.1,采取每k人一組混合化驗(yàn)一次,如果成陰性,這k人化驗(yàn)通過,如果成陽性,還需對這k人每人進(jìn)行一次化驗(yàn),以確定患病的人,問k為多少時(shí)化驗(yàn)次數(shù)最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將4個(gè)不相同的小球放入編號為1、2、3的3個(gè)盒子中,當(dāng)某個(gè)盒子中球的個(gè)數(shù)等于該盒子編號時(shí)稱為一個(gè)和諧盒,則恰有兩個(gè)和諧盒的概率為( 。
A、
2
81
B、
4
81
C、
12
81
D、
16
81

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某先生居住在城鎮(zhèn)的A處,準(zhǔn)備開車到單位C處上班,若該地各路段發(fā)生堵車事件都是相互獨(dú)立的,且在同一路段發(fā)生堵車事件最多只有一次,發(fā)生堵車事件的概率如下圖(例如,路段AB發(fā)生堵車事件的概率為
1
10
,路段BC發(fā)生堵車事件的概率為
1
15
).
(1)請你為其選擇一條由A到C的路線,使得途中發(fā)生堵車事件的概率最;
(2)若記路線A→B→C中遇到堵車次數(shù)為隨機(jī)變量ξ,求ξ的數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在等差數(shù)列{an}中從第二項(xiàng)起,每一項(xiàng)是它相鄰兩項(xiàng)的等差中項(xiàng),也是與它等距離的前后兩項(xiàng)的等比中項(xiàng),那么在等比數(shù)列{bn}中
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)k滿足
1
k-2
>1
.則方程x2-kx+1=0的兩個(gè)根可分別作為( 。
A、一橢圓和一雙曲線的離心率
B、兩拋物線的離心率
C、一橢圓和一拋物線的離心率
D、兩橢圓的離心率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義域?yàn)镽的奇函數(shù),且在(0,+∞)上是減函數(shù),若f(1)=0,則不等式f(x)>0的解集是( 。
A、(-∞,-1)∪(1,+∞)
B、(-1,0)∪(0,1)
C、(-∞,-1)∪(0,1)
D、(-1,0)∪(1,+∞)

查看答案和解析>>

同步練習(xí)冊答案