把函數(shù)y=sinx(x∈R)的圖象上所有的點向左平移
π
6
個單位長度,再把所得圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),得到的圖象所表示的函數(shù)解析式為
 
考點:函數(shù)y=Asin(ωx+φ)的圖象變換
專題:三角函數(shù)的圖像與性質
分析:由條件根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,可得結論.
解答: 解:把函數(shù)y=sinx(x∈R)的圖象上所有的點向左平移
π
6
個單位長度,可得y=sin(x+
π
6
)的圖象;
再把所得圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),可得y=sin(
1
2
x+
π
6
)的圖象;
故得到的圖象所表示的函數(shù)解析式為y=sin(
1
2
x+
π
6
),
故答案為:y=sin(
1
2
x+
π
6
).
點評:本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,△ABC是等邊三角形,PA⊥平面ABC,DC∥PA,且DC=AC=2PA=2,E是BD的中點.
(Ⅰ)求證:AE⊥BC;
(Ⅱ)求點D到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設圓(x+1)2+y2=16的圓心為C,A(1,0)是圓內一點,Q為圓周上任意一點,線段AQ的垂直平分線與CQ的連線交于點M.
(1)求點M的軌跡T的方程;
(2)設直線l:y=kx+1-2k恒過點P,且與曲線T相交于不同的兩點B、D,若
PB
PD
5
4
,試求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

a
=(cosx,sinx),
b
=(cosx,
3
cosx),f(x)=
a
b
,x∈R.
(1)求f(x)的單調遞增區(qū)間;
(2)當x∈[0,
π
2
]時,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等比數(shù)列{an}中,a22=a3,a4=8,則Sn=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=sin(
π
2
+x)cos(
π
6
-x)的最小正周期為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=2cos(2x-
3
),則下列結論正確的是
 
(寫出所有正確的編號).
①f(x)的最小正周期為π;
②f(x)在區(qū)間[
6
,
6
]上單調遞增;
③f(x)取得最大值的x的集合為{x|x=
π
3
+
k
2
π,k∈Z};
④將f(x)的圖象向左平移
12
個單位,得到一個奇函數(shù)的圖象;
⑤當x∈[
π
6
,
12
]時,關于x的方程f(x)-m=0有且只有一個實數(shù)根,則m∈[1,
3
).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若不等式x2-ax+4≥0對任意的x∈(0,3)都成立,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個街區(qū)有南北走向6條街和東西走向5條街,某人從街道的西北角A點走到東南角B點,最短的走法有
 
種.

查看答案和解析>>

同步練習冊答案