20.式子cos2($\frac{π}{4}$-α)+cos2($\frac{π}{4}$+α)=1.

分析 直接利用誘導(dǎo)公式以及平方關(guān)系式化簡(jiǎn)求解即可.

解答 解:cos2($\frac{π}{4}$-α)+cos2($\frac{π}{4}$+α)=cos2($\frac{π}{4}$-α)+sin2($\frac{π}{4}$-α)=1.
故答案為:1.

點(diǎn)評(píng) 本題考查誘導(dǎo)公式以及同角三角函數(shù)的基本關(guān)系式的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知a,b,c∈R,命題“若a+b+c=3,則a2+b2+c2≥3”的逆命題是“若a2+b2+c2≥3,則a+b+c=3”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.函數(shù)y=tan2x-2tanx,x$∈[0,\frac{π}{2})$的最小值是-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.設(shè)函數(shù)f(x)=$\sqrt{2}$sin(ωx+φ+$\frac{π}{4}$)(ω>0,|φ|<$\frac{π}{2}$)的最小正周期為π,且f(-x)=f(x),則( 。
A.f(x)在(0,$\frac{π}{2}$)單調(diào)遞減B.f(x)在($\frac{π}{4}$,$\frac{3π}{4}$)單調(diào)遞減
C.f(x)在(0,$\frac{π}{2}$)單調(diào)遞增D.f(x)在($\frac{π}{4}$,$\frac{3π}{4}$)單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知f(x)=-$\frac{\sqrt{2}}{2}$sin(2x+$\frac{π}{4}$)+2,求:
(1)f(x)的最小正周期及對(duì)稱軸方程;
(2)f(x)的單調(diào)遞增區(qū)間;
(3)若方程f(x)-m+1=0在x∈[0,$\frac{π}{2}$]上有解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=|x3-1|+x3+ax(a∈R).
(1)解關(guān)于字母a的不等式[f(-1)]2≤f(2);
(2)若a<0,求f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{8,(x=1)}\\{f(x-1)+3,(x≥2,x∈{N}^{*})}\end{array}\right.$,求f(3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過(guò)點(diǎn)P($\sqrt{3}$,$\frac{1}{2}$),離心率是$\frac{\sqrt{3}}{2}$.
(1)求橢圓C的標(biāo)準(zhǔn)方程:
(2)若直線l與橢圓C交于A,B兩點(diǎn),線段AB的中點(diǎn)為($\frac{1}{2}$,$\frac{1}{2}$),求直線l與坐標(biāo)軸圍成的三角形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=(m2-m+1)${x}^{\frac{{m}^{2}-2m-1}{2}}$是冪函數(shù),且圖象不經(jīng)過(guò)原點(diǎn).
(1)求f(4)的值;
(2)解方程f(|x|)=2.

查看答案和解析>>

同步練習(xí)冊(cè)答案