已知命題p:“?x∈R,x2+1>0”命題q:“?x∈R,tanx=2”,則下列判斷正確的是(  )
A、p∨q為真,¬p為真
B、p∨q為假,¬p為假
C、p∧q為真,¬p為真
D、p∧q為真,¬p為假
考點:復合命題的真假
專題:規(guī)律型
分析:先判斷命題p和命題q的真假,然后判斷¬P和¬q的真假,由此判斷復合命題“p∧q”,“p∧¬q”,“¬p∨q”和“¬p∨¬q”的真假.
解答: 解:命題p:“?x∈R,x2+1>0”,為真命題,則¬p為假命題;
命題q:?x∈R,使tanx=2,為真命題,¬q為假命題;
∴p∨q為真命題¬p為假命題,
故選:D.
點評:本題主要考查了命題真假判斷的應用,簡單復合命題的真假判斷,屬于基礎試題
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

等比數(shù)列{an}的前n項和為Sn,前n項倒數(shù)和為Tn,則前n項之積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

“m<0”是“方程x2+my2=1表示雙曲線”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在長為8的線段AB上任取一點C,現(xiàn)作一矩形,鄰邊長分別等于AC、BC的長,則該矩形面積大于15的概率(  )
A、
1
6
B、
1
4
C、
2
3
D、
4
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對任意兩實數(shù)a,b,定義運算“*”:a*b=
a,a≥b
b,a<b
,關(guān)于函數(shù)f(-x)=e-x*ex,給出下列四個結(jié)論:
①函數(shù)f(x)的最小值是e;
②函數(shù)f(x)為偶函數(shù);
③函數(shù)f(x)在(0,+∞)上單調(diào)遞增;
④函數(shù)f(x)的圖象與直線y=ex沒有公共點;
其中正確結(jié)論的序號是( 。
A、①③B、②③C、①④D、②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

當實數(shù)x,y滿足不等式
x≥0
y≥0
x+2y≤2
時,恒有ax+y≤2成立,則實數(shù)a的取值集合是(  )
A、(0,1]
B、(-∞,1]
C、(-1,1]
D、(1,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖1,△ABC為正三角形,△BCD為等腰直角三角形,∠BCD=90°,將△ABC沿BC邊折疊到△A′BC的位置,使A′B=A′D,E為BD中點,如圖2.
(Ⅰ)求證:A′E⊥平面BCD;
(Ⅱ)求二面角B-A′C-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,正三角形ABC的中線AF與中位線DE相交于點G,已知△A′ED是△AED繞DE旋轉(zhuǎn)過程中的一個圖形,現(xiàn)給出下列四個命題:
①動點A′在平面ABC上的射影在線段AF上;
②恒有平面A′GF⊥平面BCED;
③三棱錐A′-FED的體積有最大值;
④直線A′E與BD不可能垂直.
其中正確的命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

拋物線y2=4x的焦點為F,點P(x,y)為該拋物線上的動點,又點A(-1,0),則
|PF|
|PA|
的取值范圍是
 

查看答案和解析>>

同步練習冊答案