3.已知f(x)=x2+ax在[0,1]上是單調(diào)遞減函數(shù),則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,2]B.(-∞,-2]C.[0,+∞)D.[2,+∞)

分析 由圖象開口向上可知[0,1]在對(duì)稱軸左側(cè),列出不等式解出即可.

解答 解:f(x)=x2+ax的圖象開口向上,對(duì)稱軸為x=-$\frac{a}{2}$,
∵f(x)在[0,1]上是單調(diào)遞減函數(shù),
∴-$\frac{a}{2}$≥1,解得a≤-2.
故選B.

點(diǎn)評(píng) 本題考查了二次函數(shù)的單調(diào)性與對(duì)稱軸的關(guān)系,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知O是坐標(biāo)原點(diǎn),橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右焦點(diǎn)分別為F1,F(xiàn)2,離心率$e=\frac{{\sqrt{2}}}{2}$,且過點(diǎn)$P(1,\frac{{\sqrt{2}}}{2})$.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若⊙O是以F1F2為直徑的圓,一直線l:y=kx+m與⊙O相切,并與橢圓交于不同的兩點(diǎn)A、B,當(dāng)$\frac{2}{3}≤\overrightarrow{OA}•\overrightarrow{OB}≤\frac{3}{4}$時(shí),求△ABC的面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且滿足$cosA=\frac{3}{5}$,$\overrightarrow{AB}•\overrightarrow{AC}=3$.則△ABC的面積2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在等差數(shù)列{an}中,已知a1+a4+a7=9,a3+a6+a9=21,則數(shù)列{an}的前9項(xiàng)和S9=( 。
A.-11B.13C.45D.117

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)=ax2-2ax+a+$\frac{1}{3}$(a>0),g(x)=bx3-2bx2+bx-$\frac{4}{27}$(b>1),則y=g[f(x)]的零點(diǎn)個(gè)數(shù)為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.用二分法求函數(shù)f(x)=x3-x2-2x+1在區(qū)間[0,1]上的一個(gè)根,要求精確到0.0001,則至少要二分有根區(qū)間多少次?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若f(sinx)=1-2sin2x,則$f({\frac{{\sqrt{3}}}{2}})$的值是$-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.直線3x+$\sqrt{3}$y-4=0的傾斜角是( 。
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知直線y=-$\frac{\sqrt{3}}{3}$x+5的傾斜角是所求直線l的傾斜角的大小的5倍,且直線l分別滿足下列條件:(結(jié)果化成一般式)
(1)若過點(diǎn)P(3,-4),求直線l的方程. 
(2)若在x軸上截距為-2,求直線l的方程.
(3)若在y軸上截距為3,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案