設(shè)函數(shù)f(x)=
3-2x
3+2x
(x∈R).
(1)求函數(shù)y=f(x)的值域和零點(diǎn);
(2)請判斷函數(shù)y=f(x)的奇偶性和單調(diào)性,并給予證明.
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,函數(shù)的值域
專題:高考數(shù)學(xué)專題,函數(shù)的性質(zhì)及應(yīng)用
分析:(1)先對已知函數(shù)化簡,求函數(shù)f(x)的值域,然后令f(x)=0可求函數(shù)的零點(diǎn);
(2))利用函數(shù)的奇偶性和單調(diào)性定義來加以證明.
解答: 解:(1)∵f(x)=
3-2x
3+2x
=-1+
6
3+2x

∵2x>0,
∴3+2x>3
0<
1
3+2x
1
3
,
∴0<
6
3+2x
<2,
∴-1<f(x)<1,
故y=f(x)的值域?yàn)椋?1,1);
令f(x)=0,即
6
3+2x
=1,
解得x=log23,
∴y=f(x)的零點(diǎn)為x=log23,
(2)對任意的x∈R,
f(-1)=
3-2-1
3+2-1
=
5
7
≠±
1
5
=±f(1)

故y=f(x)是非奇非偶函數(shù),
∴對任意的x1,x2∈R,x1<x2
f(x1)-f(x2)=
6
3+2x1
-
6
3+2x2
=
6(2x2-2x1)
(3+2x1)(3+2x2)
,
3+2x1>0,3+2x2>02x2-2x1>0,
∴f(x1)>f(x2),
故y=f(x)在定義域R上是減函數(shù).
點(diǎn)評:本題考查了函數(shù)的值域,零點(diǎn),奇偶性和單調(diào)性,屬于基本知識,應(yīng)該掌握熟練.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

南昌市個(gè)體戶自主產(chǎn)業(yè)給予小額貸款補(bǔ)貼,每戶貸款額為2萬元,貸款期限有6個(gè)月、12個(gè)月、18個(gè)月、24個(gè)月、36個(gè)月五種,這五種貸款期限政府分別需要補(bǔ)助200元、300元、300元、400元、400元.從2013年起享受此政策的個(gè)體戶中抽取了100戶進(jìn)行調(diào)查統(tǒng)計(jì),其貸款期限的頻數(shù)如下表:
貸款期限 6個(gè)月 12個(gè)月 18個(gè)月 24個(gè)月 36個(gè)月
頻數(shù) 20 40 20 10 10
以上表各種貸款期限的頻率作為2014年個(gè)體戶選擇各種貸款期限的概率.
(1)某小區(qū)2014年共有3戶準(zhǔn)備享受此政策,計(jì)算其中恰好有兩戶選擇貸款期限為12個(gè)月的概率;
(2)設(shè)給某享受此政策的個(gè)體戶補(bǔ)貼為ξ元,寫出ξ的分布列,若預(yù)計(jì)2014年全市有3.6萬戶享受此政策,估計(jì)2014年該市共要補(bǔ)貼多少萬元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖甲,矩形ABCD,(AB>AD)的周長是24,把△ABC沿AC向△ADC折疊,AB折過去后交DC于點(diǎn)P,得到圖乙,設(shè)AB=x,

(1)設(shè)PC=a,試用x表示出a;
(2)把△ADP的面積S表示成x的函數(shù),并求出該函數(shù)的最大值及相應(yīng)的x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=255,
1
1+an+1
-
1
1+an
=
1
256
(n∈N*),
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式
(Ⅱ)設(shè)bk=ka2k(k∈N*),記數(shù)列{bk}的前k項(xiàng)和為Bk,求Bk的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A、B是拋物線y=1-x2上在y軸兩側(cè)的點(diǎn),求過點(diǎn)A、B的切線與x軸圍成面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C對邊分別為a,b,c,
m
=(2a,b)與
n
=(
3
,sinB)共線,
(1)求角A.
(2)將函數(shù)y1=sinx的圖象向左平移
π
6
個(gè)單位長度,再將所得圖象上各點(diǎn)的橫坐標(biāo)縮短為原來的一半(縱坐標(biāo)不變),得到函數(shù)y=f(x)的圖象,若f(A)=
1
2
,b=1,且△ABC的面積s=
3
2
,判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知 A>B,且tanA、tanB是方程6x2-5x+1=0的兩個(gè)根.
(1)求tanA、tanB、tan(A+B)的值;
(2)若AB=
5
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出以下四個(gè)命題,其中所有正確命題的序號為:
 

(1)“b2=ac”是“實(shí)數(shù)a、b、c成等比例”的充要條件;
(2)已知線性回歸方程
y
=3+2x,當(dāng)變量x增加2個(gè)單位,其預(yù)報(bào)值
y
平均增加4個(gè)單位;
(3)函數(shù)f(x)=ex-(
1
2
x在區(qū)間(-1,1)上只有1個(gè)零點(diǎn);
(4)命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2=0”;
(5)設(shè)隨機(jī)變量ξ服從正態(tài)分布N(2,9),若P(ξ>c+1)=P(ξ<c-1),則c等于3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax+2(a>0,且a≠1)的圖象必過點(diǎn)P,則P點(diǎn)的坐標(biāo)為
 

查看答案和解析>>

同步練習(xí)冊答案