【題目】如圖,幾何體中,,均為邊長為2的正三角形,且平面平面,四邊形為正方形.

1)若平面平面,求證:平面平面;

2)若二面角,求直線與平面所成角的正弦值.

【答案】1)見解析(2

【解析】

1)取的中點,的中點,連接.可證明,結(jié)合,可知四邊形為平行四邊形.進而由及平面與平面平行的判定定理證明平面平面;

2)連結(jié),可知即為二面角的平面角.為原點建立空間直角坐標(biāo)系.由線段關(guān)系寫出各個點的坐標(biāo),求得平面的法向量,即可根據(jù)直線與平面夾角的向量關(guān)系求得直線與平面所成角的正弦值.

1)證明:取的中點,的中點,連接.如下圖所示:

因為,且平面平面,

所以平面,

同理平面,

所以,

又因為,

所以四邊形為平行四邊形,

所以,平面,

, 平面,

又因為交于點

所以平面平面.

2)連結(jié),,

所以為二面角的平面角,

所以

建立如圖所示的空間直角坐標(biāo)系,

所以

設(shè)平面的一個法向量是,

,,

,,

又因為,

所以,

即所求的角的正弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國歷法中將一年分為春、夏、秋、冬四個季節(jié),每個季節(jié)有六個節(jié)氣,如夏季包含立夏、小滿、芒種、夏至、小暑以及大暑.某美術(shù)學(xué)院甲、乙、丙、丁四位同學(xué)接到繪制二十四節(jié)氣的彩繪任務(wù),現(xiàn)四位同學(xué)抽簽確定各自完成哪個季節(jié)中的六幅彩繪,在制簽及抽簽公平的前提下,甲沒有抽到繪制春季六幅彩繪任務(wù)且乙沒有抽到繪制夏季六幅彩繪任務(wù)的概率為_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱錐中,,,,.

1)求證:平面平面ABC;

2M是線段AC上一點,若,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐P-ABC中,底面ABC,,HPC的中點,MAH的中點,.

1)求PM與平面AHB成角的正弦值;

2)在線段PB上是否存在點N,使得平面ABC.若存在,請說明點N的位置,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,點T為圓上一動點,過點T分別作x軸,y軸的垂線,垂足分別為AB,連接BA延長至點P,使得,點P的軌跡記為曲線C

1)求曲線C的方程;

2)若點A,B分別位于x軸與y軸的正半軸上,直線AB與曲線C相交于M,N兩點,試問在曲線C上是否存在點Q,使得四邊形OMQN為平行四邊形,若存在,求出直線l方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)有關(guān)資料預(yù)測,某市下月1—14日的空氣質(zhì)量指數(shù)趨勢如下圖所示.,根據(jù)已知折線圖,解答下面的問題:

1)求污染指數(shù)的眾數(shù)及前五天污染指數(shù)的平均值;(保留整數(shù))

2)為了更好發(fā)揮空氣質(zhì)量監(jiān)測服務(wù)人民的目的,監(jiān)測部門在發(fā)布空氣質(zhì)量指數(shù)的同時,也給出了出行建議,比如空氣污染指數(shù)大于150時需要戴口罩,超過200時建議減少外出活動等等.如果某人事先沒有注意到空氣質(zhì)量預(yù)報,而在1—12號這12天中隨機選定一天,欲在接下來的兩天中(不含選定當(dāng)天)進行外出活動.求其外出活動的兩天期間.

①恰好都遭遇重度及以上污染天氣的概率;

②至少有一天能避開重度及以上污染天氣的概率.

附:空氣質(zhì)量等級參考表:

等級

優(yōu)

輕度污染

中度污染

重度污染

嚴重污染

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在海岸線一側(cè)有一休閑游樂場,游樂場的前一部分邊界為曲線段,該曲線段是函數(shù),的圖象,圖象的最高點為.邊界的中間部分為長1千米的直線段,且.游樂場的后部分邊界是以為圓心的一段圓弧.

(1)求曲線段的函數(shù)表達式;

(2)如圖,在扇形區(qū)域內(nèi)建一個平行四邊形休閑區(qū),平行四邊形的一邊在海岸線上,一邊在半徑上,另外一個頂點在圓弧上,且,求平行四邊形休閑區(qū)面積的最大值及此時的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,點為邊上的點,點為邊的中點,,現(xiàn)將沿邊折至位置,且平面平面.

(1) 求證:平面平面;

(2) 求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,,.

(Ⅰ)若點的中點,求證:∥平面;

(Ⅱ)當(dāng)平面平面時,求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案