已知:圓心在直線y=-2x上,并且經(jīng)過點A(2,-1),與直線x+y=1相切的圓的方程是
 
考點:直線與圓的位置關(guān)系
專題:計算題,直線與圓
分析:設(shè)出圓心的坐標(biāo)為(a,-2a),利用兩點間的距離公式表示出圓心到A的距離即為圓的半徑,且根據(jù)圓與直線x+y=1相切,根據(jù)圓心到直線的距離等于圓的半徑列出關(guān)于a的方程,求出方程的解得到a的值,確定出圓心坐標(biāo),進而求出圓的半徑,根據(jù)圓心和半徑寫出圓的標(biāo)準(zhǔn)方程即可.
解答: 解:設(shè)所求圓心坐標(biāo)為(a,-2a)
由條件得
(a-2)2+(-2a+1)2
=
|a-2a-1|
2
,化簡得a2-2a+1=0,
∴a=1,
∴圓心為(1,-2),半徑r=
2

∴所求圓方程為(x-1)2+(y+2)2=2
故答案為:(x-1)2+(y+2)2=2
點評:本題考查了直線與圓的位置關(guān)系,涉及的知識有兩點間的距離公式,點到直線的距離公式,圓的標(biāo)準(zhǔn)方程,當(dāng)直線與圓相切時,圓心到直線的距離等于圓的半徑,常常利用此性質(zhì)列出方程來解決問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若sinA+sinB=sinC•(cosA+cosB),試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知fn(x)=(1+2
x
n,n∈N*
(1)若g(x)=f4(x)+f5(x)+f6(x),求g(x)中含x2項的系數(shù);
(2)若pn是fn(x)展開式中所有無理項的二項式系數(shù)和,數(shù)列{an}是各項都大于1的數(shù)組成的數(shù)列,試用數(shù)學(xué)歸納法證明:
(1+a1)(1+a2)…(1+an)
a1a2an+1
pn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的一元二次不等式kx2+2x-1<0的解集是R,則k的取值范圍是          ( 。
A、k<-1B、k<0
C、-1<k<0D、k>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}的前n項和Sn=2n-a,n∈N*.設(shè)公差不為零的等差數(shù)列{bn}滿足:b1=a1+2,且b2+5,b4+5,b8+5成等比.
(Ⅰ) 求a及bn;
(Ⅱ) 設(shè)數(shù)列{an}的前n項和為Tn.求使Tn>bn的最小正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)是定義在[-6,6]上的偶函數(shù),且f(4)>f(2),則下列各式一定成立的是( 。
A、f(0)<f(6)
B、f(3)>f(2)
C、f(2)<f(-4)
D、f(-5)>f(-4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U=R,A={y|y=tanx,x∈B},B={x||x|≤
π
4
},則圖中陰影部分表示的集合是( 。
A、[-1,1]
B、[-
π
4
π
4
]
C、[-1,-
π
4
)∪(
π
4
,1]
D、[-1,-
π
4
]∪[
π
4
,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實數(shù)x、y滿足
x-y+5≥0
x+y≥0
x≤3
,則z=
y+4
x
的范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上的函數(shù),并滿足f(x)f(x+2)=-2,當(dāng)1<x<2時,f(x)=x,則f(5.5)=( 。
A、1.5B、-1.5
C、5.5D、-5.5

查看答案和解析>>

同步練習(xí)冊答案