解下列不等式:
(1)-3x2+5x-4<0
(2)x(1-x)>x(2x-3)+1.
考點:一元二次不等式的解法
專題:計算題,不等式的解法及應用
分析:(1)把不等式整理為標準形式,由△符號及二次函數(shù)的圖象可得解集;
(2)化簡不等式,求出對應方程的根,由圖象可得解集;
解答: 解:(1)-3x2+5x-4<0可化為3x2-5x+4>0,
△=(-5)2-4×3×4=-23<0,
則函數(shù)y=3x2-5x+4的圖象開口向上,與x軸無交點,
∴原不等式的解集為R;
(2)x(1-x)>x(2x-3)+1可化為3x2-4x+1<0,即(3x-1)(x-1)<0,
∴原不等式的解集為{x|
1
3
x<1}.
點評:該題考查一元二次不等式的解法,屬基礎題,注意數(shù)形結合思想在解題中的運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

某中學舉行了一次“環(huán)保知識競賽”,全校學生參加了這次競賽,為了了解本次競賽成績情況,從中抽取了部分學生的成績(得分取正整數(shù),滿分為100分)作為樣本進行統(tǒng)計.請根據(jù)下面尚未完成的頻率分布表和頻率分布直方圖(如圖所示)解決下列問題:
組別分組頻數(shù)頻率
第1組[50,60)80.16
第2組[60,70)a
第3組[70,80)200.40
第4組[80,90)0.08
第5組[90,100)2b
合計
(Ⅰ)寫出a、b、x、y的值;
(Ⅱ)在選取的樣本中,從競賽成績是80分以上(含80分)的同學中隨機抽取2名同學現(xiàn)廣場參加環(huán)保知識的志愿宣傳活動,求所抽取的2名同學中至少有1名同學來自第5組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐P-ABCD的底面ABCD為正方形,PD⊥底面ABCD,PD=AD.
(1)求證:平面PAC⊥平面PBD;
(2)求PC與平面PBD所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx-
ax2
2
+(a-1)x-
3
2a
,其中a>0
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)有兩個相異的零點x1,x2,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某企業(yè)要建造一個容積為18m3,深為2m的長方體形無蓋貯水池,如果池底和池壁每平方米的造價分別為200元和150元,怎樣設計該水池可使得能總造價最低?最低總造價為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐中P-ABCD中,底面ABCD為菱形,∠BAD=60°,Q為AD的中點.
(Ⅰ)若PA=PD,求證:平面PQB⊥平面PAD;
(Ⅱ)若平面PAD⊥平面ABCD,且PA=PD=AD=2,點M在線段PC上,且PM=2MC,求三棱錐P-QBM的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

“世界睡眠日”定在每年的3月21日,2009年的世界睡眠日主題是“科學管理睡眠”,以提高公眾對健康睡眠的自我管理能力和科學認識.為此某網(wǎng)站于2009年3月13日到3月20日持續(xù)一周網(wǎng)上調(diào)查公眾日平均睡眠的時間(單位:小時),共有2000人參加調(diào)查,現(xiàn)將數(shù)據(jù)整理分組后如題中表格所示.
(1)求出表中空白處的數(shù)據(jù),并將表格補充完整;
(2)畫出頻率分布直方圖;
(3)為了對數(shù)據(jù)舉行分析,采用了計算機輔助計算.分析中一部分計算見算法流程圖,求輸出的S值. 
序號(i)分組睡眠時間組中值(mi頻數(shù)
(人數(shù))
頻率(fi
1[4,5)4.580
 
2[5,6)5.55200.26
3[6,7)6.56000.30
4[7,8)7.5
 
 
5[8,9)8.52000.10
6[9,10]9.5400.02

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,△ABC內(nèi)接于⊙O,AB=AC,直線XY切⊙O于點C,BD∥XY,AC、BD相交于E.
(1)求證:△ABE≌△ACD;
(2)若AB=6cm,BC=4cm,求AE的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于任意正整數(shù)n,猜想2n-1與(n+1)2的大小關系,并給出證明.

查看答案和解析>>

同步練習冊答案