如圖在四錐P-ABCD中,CD⊥平面PAD,CD∥AB,AB=2CD,PD=AD,E為PB中點(diǎn).證明:
(Ⅰ)CE∥平面PAD.
(Ⅱ)PA⊥平面CDE.
考點(diǎn):直線(xiàn)與平面垂直的判定,直線(xiàn)與平面平行的判定
專(zhuān)題:空間位置關(guān)系與距離
分析:(Ⅰ)取PA的中點(diǎn)F,先通過(guò)證明出CDEF為平行四邊形,進(jìn)而證明出CE∥DF,最后通過(guò)線(xiàn)面平行的判定定理證明出CE∥平面PAD.
(Ⅱ)先分別證明出CD⊥PA,CE⊥PA,最后利用線(xiàn)面垂直的判定定理證明出PA⊥平面CDE.
解答: 證明:(Ⅰ)取PA的中點(diǎn)F,連接DF,EF,
∵E時(shí)PB的中點(diǎn),
∴在△PAB中有EF∥AB,且EF=
1
2
AB.
又CD∥AB,AB=2CD,
∴CD∥EF,CD=EF,
∴四邊形CDEF為平行四邊形,
∴CE∥DF,
∵CE?平面PAD,DF?平面PAD,
∴CE∥平面PAD.
(Ⅱ)∵CD⊥平面PAD,PA?平面PAD,
∴CD⊥PA,
∵△PAD中,PD=AD,F(xiàn)為PA的中點(diǎn),
∴DF⊥PF,
∵CE∥DF,
∴CE⊥PA,
∵CE∩CD=C,CE?平面CDE,CD?平面CDE,
∴PA⊥平面CDE.
點(diǎn)評(píng):本題主要考查了線(xiàn)面垂直和線(xiàn)面平行的判定定理的應(yīng)用.一般規(guī)律是從低維到高維,即先證明線(xiàn)線(xiàn)垂直或平行.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列數(shù)列{an}的前n項(xiàng)和為Sn,等比數(shù)列{bn}的各項(xiàng)均為正數(shù),公比是q,且滿(mǎn)足:a1=3,b1=1,b2+S2=12,S2=b2q.
(1)求an與bn;
(2)設(shè)cn=anbn,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知偶函數(shù)y=f(x)滿(mǎn)足:當(dāng)x≥2時(shí),f(x)=(x-2)(a-x),a∈R,當(dāng)x∈[0,2)時(shí),f(x)=x(2-x)
(Ⅰ)求f(x)表達(dá)式;
(Ⅱ)若直線(xiàn)y=1與函數(shù)y=f(x)的圖象恰有兩個(gè)公共點(diǎn),求實(shí)數(shù)a的取值范圍;
(Ⅲ)試討論當(dāng)實(shí)數(shù)a、m滿(mǎn)足什么條件時(shí),直線(xiàn)y=m和函數(shù)y=f(x)的圖象恰有k個(gè)公共點(diǎn)(k≥3),
且這k個(gè)公共點(diǎn)均勻分布在直線(xiàn)y=m上.(不要求過(guò)程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)是定義在R上的非常值函數(shù),且對(duì)任意的x,y∈R有f(x+y)=f(x)f(y).
(1)證明:f(0)=1;
(2)設(shè)A={(x,y)|f(x2)f(y2)<f(1)},B={(x,y)|f(x+y+m)=1},若f(x)在R上是單調(diào)增函數(shù),且A∩B=∅,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的不等式x2+bx+c>0的解集為{x|x<2或x>3},求關(guān)于x的不等式cx2+bx+1<0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖ABCD是邊長(zhǎng)為8
2
的正方形,E,F(xiàn)分別為AD,AB的中點(diǎn),PC⊥平面ABCD,PC=3,G,H分別為PE,PF的中點(diǎn),
(1)求證:EF∥面GHC;
(2)在PC上確定一點(diǎn)M,使平面MBD∥平面PEF,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x=1是f(x)=2x+
b
x
+lnx的一個(gè)極值點(diǎn)
(Ⅰ)求b的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知C
 
0
n
+2C
 
1
n
+22C
 
2
n
+…+2nC
 
n
n
=729,則C
 
1
n
+C
 
3
n
+…=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某儀表顯示屏上有一排八個(gè)編號(hào)小孔,每個(gè)小孔可顯示紅或綠兩種顏色燈光,若每次有且只有三個(gè)小孔可以顯示,但相鄰小孔不能同時(shí)顯示,則每次可以顯示
 
種不同的結(jié)果.

查看答案和解析>>

同步練習(xí)冊(cè)答案