已知函數(shù)f(x)=x2-2ax(a>0)對(duì)于給定的正數(shù)a,有一個(gè)最大的正數(shù)M(a),使得在整個(gè)區(qū)間[0,M(a)]上不等式|f(x)|≤5恒成立,求出M(a)的解析式.
考點(diǎn):二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)二次函數(shù)的圖象和性質(zhì),結(jié)合函數(shù)對(duì)折變換,由已知中在整個(gè)區(qū)間[0,M(a)]上不等式|f(x)|≤5恒成立,分-a2<-5時(shí)和-a2≥-5時(shí),兩種情況分別求出對(duì)應(yīng)的M(a)的解析式,最后綜合討論結(jié)果,可得答案.
解答: 解:由a>0,f(x)=x2-2ax=(x-a)2-a2
當(dāng)-a2<-5,即a>
5
時(shí),
要使|f(x)|≤5,在x∈[0,M(a)]上恒成立,
要使得M(a)最大,M(a)只能是x2-2ax=-5的較小的根,
即M(a)=a-
a2-5

當(dāng)-a2≥-5,即0<a≤
5
時(shí),
要使|f(x)|≤5,在x∈[0,M(a)]上恒成立,
要使得M(a)最大,M(a)只能是x2-2ax=5的較大的根,
即M(a)=a+
a2+5

所以M(a)=
a-
a2-5
,a>
5
a+
a2+5
,0<a≤
5
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是二次函數(shù)的性質(zhì),函數(shù)的最值,對(duì)折變換,分類討論思想,是函數(shù)圖象和性質(zhì)的綜合應(yīng)用,難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

線段AB是圓C1:x2+y2=10的一條直徑,離心率為
5
的雙曲線C2以A,B為焦點(diǎn).若P是圓C1與雙曲線C2的一個(gè)公共點(diǎn),則|PA|+|PB|的值為( 。
A、2
2
B、2
15
C、4
3
D、6
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=-
1
2
x2+2x-5的圖象的對(duì)稱軸是( 。
A、直線x=2
B、直線a=-2
C、直線y=2
D、直線x=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,橢圓C1
x2
a2
+
y2
b2
=1(a>b,b>0)和圓C2:x2+y2=b2,已知圓C2將橢圓Cl的長(zhǎng)軸三等分,且圓C2的面積為π.橢圓Cl的下頂點(diǎn)為E,過(guò)坐標(biāo)原點(diǎn)O且與坐標(biāo)軸不重合的任意直線l與圓C2相交于點(diǎn)A、B,直線EA、EB與橢圓C1的另一個(gè)交點(diǎn)分別是點(diǎn)P、M.
(Ⅰ)求橢圓C1的方程;
(Ⅱ)(i)設(shè)PM的斜率為t,直線l斜率為K1,求
K1
t
的值;
(ii)求△EPM面積最大時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知一元二次函數(shù)y=ax2+bx+c,當(dāng)x=0時(shí),y=0;當(dāng)x=30時(shí),y=4;當(dāng)x=60時(shí),y=0,求該函數(shù)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

證明:對(duì)于任意的m值,二次函數(shù)y=x2+mx-(m-1)與y=x2+x+m2至少有一個(gè)恒取正值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD為矩形,四邊形ADEF為梯形,AD∥FE,∠AFE=60°,且平面ABCD⊥平面ADEF,AF=FE=AB=
1
2
AD
=2,點(diǎn)G為AC的中點(diǎn).
(Ⅰ)求證:EG∥平面ABF;
(Ⅱ)求三棱錐B-AEG的體積;
(Ⅲ)試判斷平面BAE與平面DCE是否垂直?若垂直,請(qǐng)證明;若不垂直,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等差數(shù)列{an}前n項(xiàng)和為Sn,已知a1=3,S3=12.
(Ⅰ)求Sn
(Ⅱ)若列數(shù){bn}滿足b1=a1,bn+1=bn+2 an(n∈N*),求列數(shù){bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知全集U={1,2,3,4,5,6,7,8},在U中任取四個(gè)元素組成的集合記為A={a1,a2,a3,a4},余下的四個(gè)元素組成的集合記為∁UA={b1,b2,b3,b4},若a1+a2+a3+a4<b1+b2+b3+b4,則集合A的取法共有
 
種.

查看答案和解析>>

同步練習(xí)冊(cè)答案