設(shè)矩陣A=
.
53
-20
.
,若存在一矩陣P=
.
-13
1-2
.
使得A=PBP-1.試求:
(Ⅰ)矩陣B; 
(Ⅱ)B3
考點:變換、矩陣的相等
專題:矩陣和變換
分析:(Ⅰ)設(shè)矩陣B=
ab
cd
,則由A=PBP-1,可得AP=PB,利用矩陣乘法,列出方程組,求出a、b、c、d 的值,即可求出矩陣B;
(Ⅱ)首先根據(jù)矩陣的乘法,求出B2,然后再和矩陣B相乘,求出B3即可.
解答: 解:(Ⅰ)設(shè)矩陣B=
ab
cd
,則由A=PBP-1,可得AP=PB,
53
-20
-13
1-2
=
-13
1-2
ab
cd
,
整理得
-a+3c=-2
-b+3d=9
a-2c=2
b-2d=-6
,
解得a=2,b=0,c=0,d=3,
即B=
20
03
;      
(Ⅱ)由(1)知B2=
20
03
 
20
03
=
40
09

所以B3=B2B=
40
09
 
20
03
=
80
027
點評:本題主要考查矩陣的運(yùn)算等基礎(chǔ)知識,考查學(xué)生的運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想的運(yùn)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

過點P(-2,1)且方向向量為
n
=(-2,3)的直線方程為( 。
A、3x+2y-8=0
B、3x+2y+4=0
C、2x+3y+1=0
D、2x+3y-7=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

π
3
0
cosxdx=( 。
A、-
3
2
B、
3
2
C、
1
2
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在四棱錐P-ABCD中,AD∥BC,AD⊥CD,PA=PD=AD=2BC=2CD,E,F(xiàn)分別是AD,PC的中點.
(Ⅰ)求證AD⊥平面PBE;
(Ⅱ)求證PA∥平面BEF;
(Ⅲ)若PB=AD,求二面角F-BE-C的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用一個平行于圓錐底面的平面截這個圓錐,截得的圓臺上、下底面的半徑分別為2cm和5cm,圓臺母線長等于12cm,求圓錐的母線的長和高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體ABCD-A1B1C1D1是棱長為1的正方體.
(1)求證:BD1⊥平面ACB1;
(2)求三棱錐B-ACB1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式|t+3|-|t-2|≤6m-m2對任意t∈R恒成立.
(Ⅰ)求實數(shù)m的取值范圍;
(Ⅱ)若(Ⅰ)中實數(shù)m的最大值為λ,且3x+4y+5z=λ,其中x,y,z∈R,求x2+y2+z2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
mx2+8x+n
x2+1
的定義域為R,值域為[0,8],求實數(shù)m,n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在一個盒子中放有大小質(zhì)量相同的四個小球,標(biāo)號分別為1,2,3,4,現(xiàn)從這個盒子中有放回地先后摸出兩個小球,它們的標(biāo)號分別為x,y,記ξ=|x-y|.
(1)求P(ξ=1);
(2)求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案