(理科)已知(
x
-
2
3x
n展開式中所有項(xiàng)的二項(xiàng)式系數(shù)和為32,則其展開式中的常數(shù)項(xiàng)為
 
考點(diǎn):二項(xiàng)式系數(shù)的性質(zhì)
專題:二項(xiàng)式定理
分析:由條件求得 n=5,在展開式的通項(xiàng)公式中,令x的冪指數(shù)等于零,求得r的值,可得展開式中的常數(shù)項(xiàng).
解答: 解:由題意可得 2n=32,∴n=5,
∴(
x
-
2
3x
n=(
x
-
2
3x
5展開式的通項(xiàng)公式為 Tr+1=
C
r
5
•(-2)rx
15-5r
6

15-5r
6
=0,求得r=3,∴展開式中的常數(shù)項(xiàng)為
C
 
5
3
•(-2)3=-80,
故答案為:-80.
點(diǎn)評(píng):本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開式的通項(xiàng)公式,求展開式中某項(xiàng)的系數(shù),二項(xiàng)式系數(shù)的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知矩形紙片AA′A1′A1,點(diǎn)B、C、B1、C1分別為AA′、A1A1′的三等分點(diǎn),將矩形紙片沿BB1、CC1折成圖2所示的三棱柱ABC-A1B1C1,若面對(duì)角線AB1⊥BC1,求證:A1C⊥AB1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(x2+ax+a)ex(e為自然對(duì)數(shù)的底數(shù)).
(1)若a=-1,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)是否存在實(shí)數(shù)a,使函數(shù)f(x)在R上是單調(diào)增函數(shù)?若存在,求出a的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方形ABCD的邊長(zhǎng)是a,依次連接正方形ABCD各邊中點(diǎn)得到一個(gè)新的正方形,再依次連接新正方形各邊中點(diǎn)又得到一個(gè)新的正方形,依此得到一系列的正方形,如圖所示.現(xiàn)有一只小蟲從A點(diǎn)出發(fā),沿正方形的邊逆時(shí)針方向爬行,每遇到新正方形的頂點(diǎn)時(shí),沿這個(gè)正方形的邊逆時(shí)針方向爬行,如此下去,問爬行2n條線段的長(zhǎng)度的平方和是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知偶函數(shù)f(x)在[0,+∞)上單調(diào)遞減,f(2)=0,則滿足不等式f(x)>0的實(shí)數(shù)x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的不等式ax-b<0的解集是(3,+∞),則關(guān)于x的不等式
ax+b
x-2
>0的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=logax(a>0,且a≠1)在區(qū)間[2,8]上的最大值為6,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)過坐標(biāo)原點(diǎn)且與l:4x+y-2=0平行的直線的方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x2-2x-lnx的單調(diào)增區(qū)間是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案