求f(x)=
x
的定義域.
考點:函數(shù)的定義域及其求法
專題:函數(shù)的性質(zhì)及應用
分析:根據(jù)函數(shù)成立的條件即可得到結(jié)論.
解答: 解:要使函數(shù)有意義,則x≥0,
即函數(shù)的定義域為[0,+∞).
點評:本題主要考查函數(shù)定義域的求法,比較基礎.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設集合A={x||x-3|+|x-4|<a},B={x||x2-6x+5≤0},若A∩B=B,則實數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在二面角α-AB-β的棱上有A、B兩點,直線AC、BD分別在這個二面角的兩個半平面內(nèi),且都垂直于AB,已知AB=4,AC=6,BD=8,CD=2
17
,則直線CD與平面α所成角的正弦值為( 。
A、
697
34
B、
3
51
64
C、
697
64
D、
3
51
34

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)g(x)=2aln(x+1)+x2-2x
(1)當a>0時,討論函數(shù)g(x)的單調(diào)性;
(2)當a=0時,在函數(shù)g(x)圖象上取不同兩點A、B,設線段AB的中點為P(x0,y0),試探究函數(shù)g(x)在Q(x0,g(x0))點處的切線與直線AB的位置關(guān)系?
(3)試判斷當a≠0時g(x)圖象是否存在不同的兩點A、B具有(2)問中所得出的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求過點A(1,-1)且與圓C:x2+y2=100切于點B(8,6)的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,正方形AA1D1D與矩形ABCD所在平面互相垂直,AB=2AD=2,點E為AB的中點.
(1)求證:BD1∥平面A1DE;
(2)求:DE與面A1D1B成角余弦值;
(3)在線段AB上是否存在點M,使二面角D1-MC-D的大小為
π
4
?若存在,求出AM的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓Γ的中心在原點,焦點在x軸上,離心率為
3
2
,且過拋物線C:x2=4y的焦點F.
(1)求橢圓Γ的方程;
(2)設點F關(guān)于x軸的對稱點為F′,過F′作兩條直線l1和l2,其斜率分別為k、k′,滿足k>0,k+k′=0,它們分別是橢圓Γ的上半部分相交于G,H兩點,與x軸相交于A,B兩點,使得|GH|=
16
5
,求證:△ABF′的外接圓過點F;
(3)設拋物線C的準線為l,P,Q是拋物線上的兩個動點,且滿足∠PFQ=
π
2
,線段PQ的中點為M,點M在l上的投影為N,求
|MN|
|PQ|
的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點A(-1,0)、B(1,0),直線AM與BM相交于點M,且它們的斜率之積為-2,
(1)求動點M的軌跡E的方程;
(2)若過點N(
1
2
,1)的直線l交動點M的軌跡于C、D兩點,且點N為CD的中點,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在橢圓C:
x2
a2
+
y2
b2
=1(a>b>0),中,F(xiàn)1,F(xiàn)2分別為左右焦點A1,A2,B1,B2分別為四個頂點,已知菱形A1B1A2B2和菱形B1F1B2F2的面?zhèn)積分別為4
3
和2
3

(1)求橢圓C的標準方程;
(2)過橢圓C的右頂點A2作兩條互相垂直的直線分別和橢圓交于另一點P,Q,試判斷直線PQ是否過定點,若過定點,求出該定點的坐標;若不過定點,請說明理由.

查看答案和解析>>

同步練習冊答案