【題目】已知△ABC的面積為3,且滿足0≤≤6,設(shè)與的夾角為θ.
(1)求θ的取值范圍;
(2)求函數(shù)f(θ)=2sin2- (cos θ+sin θ)·(cos θ-sin θ)的最大值與最小值.
【答案】(1)(2)見解析
【解析】分析:(1)設(shè)△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c.由題意可得bcsin θ=3,由0≤·≤6可得0≤≤1,可得θ∈;
(2)利用三角恒等變換化簡函數(shù)即可.
詳解:(1)設(shè)△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c.
因為0≤·≤6,所以0≤bccos θ≤6.
又bcsin θ=3,所以0≤≤1.
又θ∈(0,π),當(dāng)cos θ=0時,θ=;
當(dāng)θ≠時,1≤tan θ,所以θ∈.
綜上所述,θ的取值范圍為.
(2)f(θ)=2sin2- (cos θ+sin θ)(cos θ-sin θ)
=2sin2- (cos2 θ-sin2 θ)
=1-cos-cos 2θ
=1+sin 2θ-cos 2θ
=2sin+1.
因為θ∈,所以2θ-∈,
則≤sin≤1,
故2≤2sin+1≤3.
故當(dāng)且僅當(dāng)θ=時,f(θ)min=2,
當(dāng)θ=時,f(θ)max=3.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為定義在上的函數(shù),其圖象關(guān)于軸對稱,當(dāng)時,有,且當(dāng)時,,若函數(shù)恰有個不同的零點,則實數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分14分)
已知正項數(shù)列滿足:對任意正整數(shù),都有成等差數(shù)列,成等比數(shù)列,且
(Ⅰ)求證:數(shù)列是等差數(shù)列;
(Ⅱ)求數(shù)列的通項公式;
(Ⅲ) 設(shè)如果對任意正整數(shù),不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 經(jīng)過點 ,離心率為 ,左、右焦點分別為 .
(1)求橢圓的方程;
(2)若直線 與橢圓交于A,B兩點,與以 為直徑的圓交于C,D兩點,求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=x2-2ax+2(a∈R),當(dāng)x∈[-1,+∞)時,恒成立,則a的取值范圍是_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)若函數(shù) 在 處有極值 ,求 的值;
(2)若對于任意的 在 上單調(diào)遞增,求 的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某科研小組有20個不同的科研項目,每年至少完成一項。有下列兩種完成所有科研項目的計劃:
A計劃:第一年完成5項,從第一年開始,每年完成的項目不得少于次年,直到全部完成為止;
B計劃:第一年完成項數(shù)不限,從第一年開始,每年完成的項目不得少于次年,恰好5年完成所有項目。
那么,按照A計劃和B計劃所安排的科研項目不同完成順序的方案數(shù)量
A. 按照A計劃完成的方案數(shù)量多
B. 按照B計劃完成的方案數(shù)量多
C. 按照兩個計劃完成的方案數(shù)量一樣多
D. 無法判斷哪一種計劃的方案數(shù)量多
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com