設(shè)離散型隨機變量ξ的概率分布如下:則a的值為
 

X 1 2 3 4
P
1
6
1
3
1
6
a
考點:離散型隨機變量及其分布列
專題:概率與統(tǒng)計
分析:利用離散型隨機變量的分布列的性質(zhì)求解.
解答: 解:由離散型隨機變量ξ的分布列,知:
1
6
+
1
3
+
1
6
+a=1
,
解得a=
1
3

故答案為:
1
3
點評:本題考查實數(shù)的值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意離散型隨機變量的分布列的性質(zhì)的靈活運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若a≥0,b≥0,且a+b=1,則a2+b2的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若單調(diào)遞增數(shù)列{an}滿足an+an+1+an+2=3n-6,且a2=
1
2
a1,則a1的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把正整數(shù)按一定的規(guī)則排成了如圖所示的三角形數(shù)表.設(shè)aij(i,j∈N+)是位于這個三角形數(shù)表中從上往下數(shù)第i行、從左往右數(shù)第j個數(shù),如a42=8.若aij=2014,則i+j=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求y=2x2-5x+3在點(2,1)處的切線方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

要證明“
2
+
3
10
”可選擇的方法有以下幾種,其中最合理的是
 
.(填序號)
①反證法    
②分析法     
③綜合法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x>0,y>0,且
2
x
+
1
y
=1,若x+2y+1≥k2恒成立,則k的范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法錯誤的是( 。
A、如果命題“¬p”與命題“p∨q”都是真命題,那么命題q一定是真命題
B、命題“若a=0,則ab=0”的否命題是:“若a≠0,則ab≠0”
C、若命題p:?x0∈R,x02+2x0-3<0,則?p:?x∈R,x2+2x-3≥0
D、“sinθ=
1
2
”是“θ=30°”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

p:|a|≤1,q:函數(shù)f(x)=ax在R上單調(diào)遞增,則¬p是q的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分又不必要條件

查看答案和解析>>

同步練習(xí)冊答案