已知函數(shù)f(x)滿(mǎn)足:對(duì)于任意的x∈R,都有f(x+2)=f(x-4)成立,且當(dāng)x∈[-2,4)時(shí),f(x)=2x+1,則f(2013)=
 
考點(diǎn):函數(shù)的周期性
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)的周期性定義判斷函數(shù)的周期,利用函數(shù)的周期性即可得到結(jié)論.
解答: 解:∵f(x+2)=f(x-4),
∴f(x+6)=f(x),即函數(shù)的周期是6.
則f(2013)=f(335×6+3)=f(3),
∵當(dāng)x∈[-2,4)時(shí),f(x)=2x+1,
∴f(3)=23+1=24=16,
故f(2013)=f(3)=16,
故答案為:16
點(diǎn)評(píng):本題主要考查函數(shù)值的計(jì)算,根據(jù)條件求出函數(shù)的周期性是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}滿(mǎn)足a1=2,a2+a4=8,且對(duì)任意的n∈N*,都有an+an+2=2an+1
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{bn}的前n項(xiàng)和為Sn.且滿(mǎn)足S1Sn=2bn-b1,n∈N*,b1≠0,求數(shù)列{anbn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax2-4x-1.
(1)當(dāng)a=2時(shí),求函數(shù)f(x)的零點(diǎn);
(2)當(dāng)a=2且x∈(0,1)時(shí),f(1-m)-f(2m-1)<0恒成立,求m的取值范圍;
(3)若a=0,設(shè)g(x)=
b
x
(b≠0)
,且函數(shù)h(x)=g(x)-f(x)是區(qū)間(1,3)上的單調(diào)函數(shù),求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知全集U={x|-3<x<6},集合A={x|-2<x<1},B={x|5<x<6},則A與∁UB的關(guān)系為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)在定義域(-1,1)內(nèi)單調(diào)遞減,且 f(1-a)<f(a2-1),則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是定義在R上的偶函數(shù),當(dāng)x≤0時(shí),f(x)=x2+2x,那么不等式f(x+1)<3的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)點(diǎn)(2,3)與y=x2-2x+3相切的切線(xiàn)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)?a、b∈R,運(yùn)算“⊕”、“?”定義為:a⊕b=
a(a<b)
b(a≥b)
,a?b=
a(a≥b)
b(a<b)
,則下列各式其中不恒成立的是( 。
(1)a?b+a⊕b=a+b
(2)a?b-a⊕b=a-b
(3)[a?b]•[a⊕b]=a•b
(4)[a?b]÷[a⊕b]=a÷b.
A、(1)(3)
B、(2)(4)
C、(1)(2)(3)
D、(1)(2)(3)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(1,2cos2x-1),
b
=(
3
sin2x,1),函數(shù)f(x)=
a
b

(1)求f(x)單調(diào)遞減區(qū)間;
(2)f(x)向右平移
π
6
個(gè)長(zhǎng)度單位,再向下平移
1
2
個(gè)長(zhǎng)度單位,得到g(x)的圖象,求g(x)在[0,
π
2
]上的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案