7.函數(shù)y=$\sqrt{3}$sinx-cosx的最小正周期和最小值分別為( 。
A.2π,$\sqrt{3}$B.π,-1C.2π,-2D.π,2

分析 化簡(jiǎn)函數(shù)為一個(gè)角的一個(gè)三角函數(shù)的形式,然后求解周期以及最小值.

解答 解:函數(shù)y=$\sqrt{3}$sinx-cosx=2sin(x-$\frac{π}{6}$),
函數(shù)的周期為:2π,最小值為-2;
故選:C.

點(diǎn)評(píng) 本題考查三角函數(shù)的化簡(jiǎn)求值,周期的求法,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖:AB是拋物線y2=2px(p>0)過焦點(diǎn)F的一條弦,設(shè)A(x1,y1),B(x2,y2),AB的中點(diǎn)M(x0,y0),相應(yīng)的準(zhǔn)線為l.
證明:
(1)以AB為直徑的圓必與準(zhǔn)線l相切;
(2)|AB|=2(x0+$\frac{p}{2}$)(焦點(diǎn)弦長(zhǎng)與中點(diǎn)關(guān)系);
(3)|AB|=x1+x2+p;
(4)x1•x2=$\frac{{p}^{2}}{4}$,y1•y2=-p2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,以原點(diǎn)O為圓心,以橢圓C的長(zhǎng)半軸長(zhǎng)為半徑的圓與直線x-y+2=0相切.
(1)求橢圓C的標(biāo)準(zhǔn)方程
(2)過橢圓C的右焦點(diǎn)F作斜率為-$\frac{\sqrt{2}}{2}$的直線l交橢圓C于A,B兩點(diǎn),且$\overrightarrow{OA}+\overrightarrow{OD}=\overrightarrow{BO}$,又點(diǎn)D關(guān)于坐標(biāo)原點(diǎn)O的對(duì)稱點(diǎn)為點(diǎn)E,求AB與DE兩條線段的垂直平分線的交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.過圓C:x2+y2=4上一動(dòng)點(diǎn)M作x軸的垂線段MD,D為垂足.若$\overrightarrow{MD}=2\overrightarrow{MQ}$.
(1)求動(dòng)點(diǎn)Q的軌跡方程,并說明此軌跡是什么曲線;
(2)設(shè)直線x=my+1與動(dòng)點(diǎn)Q的軌跡交于A,B兩點(diǎn),點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)為A′.試問:當(dāng)m變化時(shí),直線A′B與x軸的是否交于一個(gè)定點(diǎn)?若是,請(qǐng)寫出定點(diǎn)坐標(biāo);若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在△ABC中,cosA=$\frac{3}{5}$,且cosB=$\frac{5}{13}$.則cosC的值是$\frac{33}{65}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.求與兩平行線l1:3x+4y-10=0和l2:3x+4y-12=0距離相等的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,某廣場(chǎng)中間有一塊邊長(zhǎng)為2百米的菱形狀綠化區(qū)ABCD,其中BMN是半徑為1百米的扇形,∠ABC=$\frac{2π}{3}$,管理部門欲在該地從M到D修建小路;在$\widehat{MN}$上選一點(diǎn)P(異于M、N兩點(diǎn)),過點(diǎn)P修建與BC平行的小路PQ.
(1)設(shè)∠PBC=θ,試用θ表示修建的小路$\widehat{MP}$與線段PQ及線段QD的總長(zhǎng)度l;
(2)求l的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知點(diǎn)A(2,4)在冪函數(shù)y=f(x)的圖象上,也在函數(shù)g(x)=f(x)+$\frac{a}{{x}^{3}}$-1
(1)求函數(shù)g(x)的圖象在點(diǎn)A處的切線與坐標(biāo)軸圍成的三角形的面積;
(2)若函數(shù)h(x)=mf(x)-g(x)-1nx在[1,5]上單調(diào)遞增,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.2015年6月中旬,經(jīng)過北京市自住房搖號(hào),洪某搖中一套兩居室自住房,戶型面積為84m2,銷售均價(jià)為28000元/m2,他打算采用公積金貸款的方式繳納房款,經(jīng)查詢,五年以上公積金貸款利率為4%,五年及以下公積金貸款利率為3.5%,經(jīng)過盤算.洪某打算貸款額度為所購(gòu)住房?jī)r(jià)款的70%(四舍五入精確到萬),并選擇等額本息的還款方式還25年,但當(dāng)他準(zhǔn)備貸款時(shí),公積金貸款利率自2015年6月28日調(diào)整了,五年以上公積金貸款利率為3.5%,五年及以下公積金貸款利率為3%.問:
(1)在原公積金貸款利率下,洪某每月需要還款多少(精確到元)?25年總共還多少利息?
(2)若洪某以之前設(shè)定好的每月還款額還款(四舍五入到整數(shù)元),在調(diào)整了公積金貸款利率后需要還多少年?

查看答案和解析>>

同步練習(xí)冊(cè)答案