分析 (1)由題意,QP,交AB于E利用正弦定理,求出EP,EB,即可用θ表示修建的小路$\widehat{MP}$與線段PQ及線段QD的總長度l;
(2)求導(dǎo)數(shù),確定函數(shù)的單調(diào)性,即可求l的最小值.
解答 解:(1)由題意,延長QP,交AB于E,則${l}_{\widehat{MP}}$=($\frac{2π}{3}$-θ),
△BPE中,∠EPB=θ,∠EBP=$\frac{2π}{3}$-θ,∠BEP=$\frac{π}{3}$,
∴EP=$\frac{2}{\sqrt{3}}$sin($\frac{2π}{3}$-θ),EB=$\frac{2}{\sqrt{3}}$sinθ,
∴PQ=2-$\frac{2}{\sqrt{3}}$sin($\frac{2π}{3}$-θ),QD=2-$\frac{2}{\sqrt{3}}$sinθ,
∴l(xiāng)=$\frac{2π}{3}$-θ+2-$\frac{2}{\sqrt{3}}$sin($\frac{2π}{3}$-θ)+2-$\frac{2}{\sqrt{3}}$sinθ
=4-$\frac{2}{\sqrt{3}}$sin($\frac{2π}{3}$-θ)-$\frac{2}{\sqrt{3}}$sinθ+$\frac{2π}{3}$-θ
=4-2sin(θ+$\frac{π}{6}$)+$\frac{2π}{3}$-θ(0<θ<$\frac{2π}{3}$);
(2)l′=-2cos(θ+$\frac{π}{6}$)-1,
∴0<θ<$\frac{π}{2}$時,l′<0,$\frac{π}{2}$<θ<$\frac{2π}{3}$,時,l′>0,
∴θ=$\frac{π}{2}$時,l取得最小值,最小值為(4-$\sqrt{3}$+$\frac{π}{6}$)百米.
點(diǎn)評 本題考查三角函數(shù)中的恒等變換應(yīng)用,考查正弦定理與兩角差與兩角和的正弦,考查導(dǎo)數(shù)知識的運(yùn)用,考查運(yùn)算求解能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2π,$\sqrt{3}$ | B. | π,-1 | C. | 2π,-2 | D. | π,2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x2=$\frac{1}{12}$y | B. | x2=$\frac{1}{12}$y或x2=-$\frac{1}{36}$y | ||
C. | x2=-$\frac{1}{36}$y | D. | x2=12或x2=-36y |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,$\sqrt{2}$] | B. | ($\frac{1}{2}$,$\frac{\sqrt{2}}{2}$) | C. | (1,$\sqrt{2}$) | D. | ($\sqrt{2}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com