若直線ax+y-2=0與直線x-y-2=0平行,則實(shí)數(shù)a的值為
 
考點(diǎn):直線的一般式方程與直線的平行關(guān)系
專題:直線與圓
分析:利用兩條直線平行斜率相等即可得出.
解答: 解:∵直線ax+y-2=0與直線x-y-2=0平行,∴-a=1,解得a=-1.
當(dāng)a=-1時(shí),直線ax+y-2=0即-x+y+2=0,化為x-y+2=0,
可知:二直線平行.
故答案為-1.
點(diǎn)評:本題考查了兩條直線平行斜率相等的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x-3
-
1
lg(7-x)
的定義域?yàn)榧螦,B={x∈Z|2<x<10}
(1)求A
(2)(∁RA)∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知銳角△ABC的面積為3,BC=4,CA=3,則角C的大小為( 。
A、75°B、60°
C、45°D、30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某早餐店的早點(diǎn)銷售價(jià)格如下:
飲料 豆?jié){ 牛奶
單價(jià) 1元 2.5元 1元
面食 油條 面包 包子
單價(jià) 1元 4元 1元
假設(shè)小明的早餐搭配為一杯飲料和一個(gè)面食.
(1)求小明的早餐價(jià)格最多為3元的概率;
(2)求小明不喝牛奶且不吃油條的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x2-x-2,x∈[-5,5],那么任取一點(diǎn)x0∈[-5,5],使f(x0)≥0的概率
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過橢圓2x2+y2-10=0在第一象限內(nèi)的點(diǎn)P作圓x2+y2=4的兩條切線,當(dāng)這兩條切線垂直時(shí),點(diǎn)P的坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l1:a1x+b1y+1=0直線l2:a2x+b2y+1=0交于一點(diǎn)(2,3),則經(jīng)過A(a1,b1),B(a2,b2)兩點(diǎn)的直線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

到點(diǎn)A(1,1,1)、B(-1,-1,-1)的距離相等的點(diǎn)C(x,y,z)的坐標(biāo)滿足( 。
A、x+y+z=-1
B、x+y+z=0
C、x+y+z=1
D、x+y+z=3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)x萬件,需另投入的成本為C(x)(單位:萬元),當(dāng)年產(chǎn)量小于80萬件時(shí),C(x)=
1
3
x2+10x;當(dāng)年產(chǎn)量不小于80萬件時(shí),C(x)=51x+
10000
x
-1450.假設(shè)每萬件該產(chǎn)品的售價(jià)為50萬元,且該廠當(dāng)年生產(chǎn)的該產(chǎn)品能全部銷售完.
(1)寫出年利潤L(x)(萬元)關(guān)于年產(chǎn)量x(萬件)的函數(shù)關(guān)系式;
(2)年產(chǎn)量為多少萬件時(shí),該廠在該產(chǎn)品的生產(chǎn)中所獲利潤最大?最大利潤是多少?

查看答案和解析>>

同步練習(xí)冊答案