已知函數(shù)f(x)對任意的實數(shù)x,都有f(2+x)=f(2-x),f(1+x)=-f(x),且f(x)不恒為0,則f(x)是( 。
A、奇函數(shù)但非偶函數(shù)
B、偶函數(shù)但非奇函數(shù)
C、既是奇函數(shù)又是偶函數(shù)
D、是非奇非偶函數(shù)
考點:函數(shù)奇偶性的性質(zhì),函數(shù)奇偶性的判斷
專題:三角函數(shù)的圖像與性質(zhì)
分析:根據(jù)f(2+x)=f(2-x),可得函數(shù)的圖象關(guān)于直線x=2對稱;再根據(jù)f(1+x)=-f(x),可得f(x)的周期為2,從而得出結(jié)論.
解答: 解:根據(jù)f(2+x)=f(2-x),可得函數(shù)的圖象關(guān)于直線x=2對稱;
再根據(jù)f(1+x)=-f(x),即f(2+x)=f(x),可得f(x)的周期為2.
再由f(x)不恒為0,可得函數(shù)f(x)是偶函數(shù)但非奇函數(shù),
故選:B.
點評:本題主要考查函數(shù)的奇偶性、周期性的判斷,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)某班級二模測試后的數(shù)學成績服從正態(tài)分布,其密度函數(shù)是f(x)=
1
10
e -
(x-80)2
200
,x∈R,則下列的估計不正確的是(  )
A、該班級的平均成績是80分
B、分數(shù)在120以上的人數(shù)與分數(shù)在60分以下的人數(shù)相同
C、該班級數(shù)學成績標準差是10分
D、分數(shù)在110以上的人數(shù)與分數(shù)在50分以下的人數(shù)相同

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若tanθ=
1
3
,則2cos2θ-sin(2θ-π)的值為( 。
A、
12
5
B、
8
5
C、-
8
5
D、-
12
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

三人相互傳球,由甲開始發(fā)球,經(jīng)過5次傳球后,球仍回到甲手中,則不同的傳球方法的種數(shù)是( 。
A、6B、8C、10D、16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=|x+a|(a∈R)在[-1,1]上的最大值為M(a),則函數(shù)g(x)=M(x)-|x2-1|的零點的個數(shù)為( 。
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某程序圖如圖所示,該程序運行后輸出的結(jié)果是(  )
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知全集U={1,2,3,4,5,6},集合M={2,3,5},N={4,5},則∁U(M∪N)的元素個數(shù)有( 。
A、0個B、1個C、2D、3個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=ax-a-x(a>0且a≠1).
(1)求函數(shù)f(x)的定義域,并判斷函數(shù)f(x)的奇偶性;
(2)若0<a<1,解不等式f(x2+6x)+f(4-x)<0;
(3)若f(1)=
3
2
,g(x)=a2x+a-2x-2mf(x)且g(x)在[1,+∞)上的最小值為-2,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,
m
=(2cosA,
3
sinA),
n
=(cosA,-2cosA),
m
n
=-1.
(1)若a=2
3
,c=2,求S△ABC
(2)求
b-2c
2cos(
π
3
+C)
的值.

查看答案和解析>>

同步練習冊答案