20.若關(guān)于x的二次函數(shù)f(x)=3ax2+(3-7a)x+4在(0,1)及(1,2)上各有一個零點.則實數(shù)a的取值范圍是($\frac{7}{4}$,5).

分析 根據(jù)題意,結(jié)合二次函數(shù)的解析式可得f(0)=4>0,又由二次函數(shù)f(x)=3ax2+(3-7a)x+4在(0,1)及(1,2)上各有一個零點,可得$\left\{\begin{array}{l}f(1)<0\\ f(2)>0\end{array}\right.$,解可得a的范圍,即可得答案.

解答 解:根據(jù)題意,對于二次函數(shù)f(x)=3ax2+(3-7a)x+4,有f(0)=4>0,
二次函數(shù)f(x)=3ax2+(3-7a)x+4在(0,1)及(1,2)上各有一個零點.
∴$\left\{\begin{array}{l}f(1)<0\\ f(2)>0\end{array}\right.$,
∴$\left\{\begin{array}{l}3a+3-7a+4<0\\ 12a+2(3-7a)+4>0\end{array}\right.$,
解得:a∈($\frac{7}{4}$,5),
故答案為:($\frac{7}{4}$,5)

點評 本題考查二次函數(shù)的性質(zhì),涉及函數(shù)零點的判定定理,注意結(jié)合二次函數(shù)的圖象性質(zhì)進行分析.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

10.已知函數(shù)f(x)=$\left\{\begin{array}{l}{1-2|x-\frac{1}{2}|,0≤x≤1}\\{lo{g}_{2015}x,x>1}\end{array}\right.$,若直線y=m與函數(shù)y=f(x)的三個不同交點的橫坐標依次為x1,x2,x3,則x1+x2+x3的取值范圍是(2,2016).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知在正方體ABCD-A1B1C1D1中,M、E、F、N分別是A1B1、B1C1、C1D1、D1A1的中點.求證:
(1)EF∥平面ABCD;
(2)平面AMN∥平面EFDB.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.橢圓$\frac{4}{25}{x^2}+\frac{y^2}{5}$=1過右焦點有n條弦的長度成等差數(shù)列,最小弦長為數(shù)列的首項a1,最大弦長為an,若公差為d$∈[\frac{1}{6},\frac{1}{3}],那么n$的取值集合為(  )
A.{4,5,6,7}B.{4,5,6}C.{3,4,5,6}D.{3,4,5,6,7}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.在平面直角坐標系xoy中,設(shè)P(x,y)是橢圓$\frac{{x}^{2}}{3}+{y}^{2}=1$上的一個動點.
(1)寫出橢圓的參數(shù)方程;
(2)求S=x+y的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{x+b}{{1+{x^2}}}$是定義在(-1,1)上的奇函數(shù),
(1)求函數(shù)f(x)的解析式;
(2)用單調(diào)性的定義證明函數(shù)f(x)在(-1,1)上是增函數(shù);
(3)解不等式 f(x2-1)+f(x)<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知某個幾何體的三視圖如下,根據(jù)圖中標出的尺寸,那么可得這個幾何體最長的棱長是( 。
A.2B.$\sqrt{5}$C.2$\sqrt{2}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.${∫}_{-1}^{1}$$\frac{{x}^{3}si{n}^{2}x}{{x}^{4}+{x}^{2}+1}$dx=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)$f(x)=\sqrt{lg({2x-1})}$,求函數(shù)的定義域,并判斷它的奇偶性.

查看答案和解析>>

同步練習冊答案