函數(shù)f(x)=x3-3x+2的二階導(dǎo)數(shù)為
 
考點:導(dǎo)數(shù)的運算
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:由函數(shù)的解析式求出 f′(x),從而求得f″(x).
解答: 解:∵函數(shù)f(x)=x3-3x+2,∴f′(x)=3x2-3,∴f″(x)=6x,
故答案為:6x.
點評:本題主要考查求函數(shù)的導(dǎo)數(shù)的方法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

點(4,-2)關(guān)于直線2x-y-4=0的對稱點的坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y∈R,則命題“x2+y2<1”是命題“|x|+|y|<1”的
 
條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是周期為2的奇函數(shù),當(dāng)x≥0時,f(x)=2x+2x+b(b為常數(shù)),則f(-
5
2
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為
x=t-3
y=
3
t
,(t為參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ2-4ρcosθ+3=0
(Ⅰ)求直線l的普通方程和曲線C的直角坐標(biāo)方程;
(Ⅱ)設(shè)點P是曲線C上的一個動點,求它到直線l的距離d的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知-1<a<2,0<b<3,則a-b的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是一組有規(guī)律的圖案,第(1)個圖案由4個基礎(chǔ)圖形組成,第(2)個圖案由7個基礎(chǔ)圖形組成,…,第(670)個圖案中的基礎(chǔ)圖形個數(shù)有( 。
A、2008B、2009
C、2010D、2011

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列關(guān)于命題的說法錯誤的是( 。
A、命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0”
B、命題“?x∈(-∞,0),2x<3x”是真命題
C、“a=2”是“函數(shù)f(x)=logax在區(qū)間(0,+∞)上為增函數(shù)”的充分不必要條件
D、若命題p:?n∈N,2n>1000,則¬p:?n∈N,2n≤1000

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在區(qū)間[-1,1]上的函數(shù)f(x)=
2x+b
x2+1
為奇函數(shù).
(1)求實數(shù)b的值.
(2)判斷函數(shù)f(x)在區(qū)間(-1,1)上的單調(diào)性,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案