數(shù)列{an}是首項(xiàng)為23,公差為整數(shù)的等差數(shù)列,且第六項(xiàng)為正,第七項(xiàng)為負(fù),求數(shù)列{an}的通項(xiàng)公式.
考點(diǎn):等差數(shù)列的通項(xiàng)公式
專題:等差數(shù)列與等比數(shù)列
分析:利用等差數(shù)列的通項(xiàng)公式求解.
解答: 解:由已知a6=a1+5d=23+5d>0,
a7=a1+6d=23+6d<0,
解得:-
23
5
<d<-
23
6
,
又d∈Z,∴d=-4,
∴an=23+(n-1)×(-4)=-4n+27.
點(diǎn)評(píng):本題考查數(shù)列的通項(xiàng)公式的求法,是基礎(chǔ)題,解題時(shí)要注意等差數(shù)列的性質(zhì)的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正項(xiàng)數(shù)列{an}的首項(xiàng)a1=1,前n項(xiàng)和Sn滿足an=
Sn
+
Sn-1
(n≥2).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若bn=
1
Sn
Sn+3
,記數(shù)列{bn}的前n項(xiàng)和為T(mén)n,求證:Tn
11
18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

國(guó)內(nèi)投寄信函(外埠),郵資按下列規(guī)則計(jì)算:
(1)信函質(zhì)量不超過(guò)100g時(shí),每20g付郵資80分,即信函質(zhì)量不超過(guò)20g付郵資80分,信函質(zhì)量超過(guò)20g時(shí),但不超過(guò)40g付郵資160分,依此類推;
(2)信函質(zhì)量大于100g且不超過(guò)200g時(shí),每100g付郵資200分,即信函質(zhì)量超過(guò)100g,但不超過(guò)200g付郵資(A+200)分(A為質(zhì)量等于100g的信函的郵資),信函質(zhì)量超過(guò)200g,但不超過(guò)300g付郵資(A+400)分,依此類推.
設(shè)一封xg(0<x≤200)的信函應(yīng)付的郵資為y(單位:分),試寫(xiě)出以x為自變量的函數(shù)y的解析式,并畫(huà)出這個(gè)函數(shù)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,底面為正方形的四棱錐S-ABCD 中,P為側(cè)棱SD上的點(diǎn)且SD⊥平面PAC,每條側(cè)棱的長(zhǎng)都是底面邊長(zhǎng)的
2
倍.
(1)求二面角P-AC-D的大。
(2)在側(cè)棱SC上是否存在一點(diǎn)E,使得BE∥平面PAC.若存在,求SE:EC的值;若不存在,試說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)若函數(shù)f(x+1)=x2+2x,求函數(shù)f(x)的解析式.
(2)已知f(x)+2f(
1
x
)=3x+1,求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2sin(x-
π
3
)cosx+sinxcosx+
3
sin2x(x∈R).
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)在△ABC中,B為銳角,且f(B)=
3
,AC=4
3
,D是BC邊上一點(diǎn),AB=AD,試求AD+DC的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

動(dòng)點(diǎn)P到兩點(diǎn)(
3
,0),(-
3
,0)的距離和為4;動(dòng)點(diǎn)Q在動(dòng)圓C1:x2+y2=r2(1<r<4)上.
(1)求動(dòng)點(diǎn)P的軌跡C2的方程;
(2)若直線PQ與C1和C2均只有一個(gè)交點(diǎn),求線段PQ長(zhǎng)度的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某幾何體的三視圖如圖所示,說(shuō)明該簡(jiǎn)單組合體的結(jié)構(gòu),并求該幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若不等式f(x)≥0的解集為[2,4],不等式g(x)≥0的解集為∅,則
f(x)
g(x)
>0的解集為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案