年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】南北朝時(shí)代的偉大科學(xué)家祖暅在數(shù)學(xué)上有突出貢獻(xiàn),他在實(shí)踐的基礎(chǔ)上提出祖暅原理:“冪勢(shì)既同,則積不容異”. 其含義是:夾在兩個(gè)平行平面之間的兩個(gè)幾何體,被平行于這兩個(gè)平行平面的任意平面所截,如果截得的兩個(gè)截面的面積總相等,那么這兩個(gè)幾何體的體積相等.如圖,夾在兩個(gè)平行平面之間的兩個(gè)幾何體的體積分別為,被平行于這兩個(gè)平面的任意平面截得的兩個(gè)截面面積分別為,則“相等”是“總相等”的
A. 充分而不必要條件B. 必要而不充分條件
C. 充分必要條件D. 既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大型商場(chǎng)去年國(guó)慶期間累計(jì)生成萬(wàn)張購(gòu)物單,從中隨機(jī)抽出張,對(duì)每單消費(fèi)金額進(jìn)行統(tǒng)計(jì)得到下表:
消費(fèi)金額(單位:元) | |||||
購(gòu)物單張數(shù) | 25 | 25 | 30 | 10 | 10 |
由于工作人員失誤,后兩欄數(shù)據(jù)已無(wú)法辨識(shí),但當(dāng)時(shí)記錄表明,根據(jù)由以上數(shù)據(jù)繪制成的頻率分布直方圖所估計(jì)出的每單消費(fèi)額的中位數(shù)與平均數(shù)恰好相等.用頻率估計(jì)概率,完成下列問(wèn)題:
(1)估計(jì)去年國(guó)慶期間該商場(chǎng)累計(jì)生成的購(gòu)物單中,單筆消費(fèi)額超過(guò)元的概率;
(2)為鼓勵(lì)顧客消費(fèi),該商場(chǎng)打算在今年國(guó)慶期間進(jìn)行促銷(xiāo)活動(dòng),凡單筆消費(fèi)超過(guò)元者,可抽獎(jiǎng)一次,中一等獎(jiǎng)、二等獎(jiǎng)、三等獎(jiǎng)的顧客可以分別獲得價(jià)值元、元、元的獎(jiǎng)品.已知中獎(jiǎng)率為,且一等獎(jiǎng)、二等獎(jiǎng)、三等獎(jiǎng)的中獎(jiǎng)率依次構(gòu)成等比數(shù)列,其中一等獎(jiǎng)的中獎(jiǎng)率為.若今年國(guó)慶期間該商場(chǎng)的購(gòu)物單數(shù)量比去年同期增長(zhǎng),式預(yù)測(cè)商場(chǎng)今年國(guó)慶期間采辦獎(jiǎng)品的開(kāi)銷(xiāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于圓周率,數(shù)學(xué)發(fā)展史上出現(xiàn)過(guò)多很有創(chuàng)意的求法,如著名的蒲豐試驗(yàn),受其啟發(fā),我們也可以通過(guò)設(shè)計(jì)下面的試驗(yàn)來(lái)估計(jì)的值,試驗(yàn)步驟如下:①先請(qǐng)高二年級(jí)名同學(xué)每人在小卡片上隨機(jī)寫(xiě)下一個(gè)實(shí)數(shù)對(duì);②若卡片上的,能與構(gòu)成銳角三角形,則將此卡片上交;③統(tǒng)計(jì)上交的卡片數(shù),記為;④根據(jù)統(tǒng)計(jì)數(shù),估計(jì)的值.那么可以估計(jì)的值約為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公交公司為了方便市民出行,科學(xué)規(guī)劃車(chē)輛投放,在一個(gè)人員密集流動(dòng)地段增設(shè)一個(gè)起點(diǎn)站,為了研究車(chē)輛發(fā)車(chē)間隔時(shí)間x與乘客等候人數(shù)y之間的關(guān)系,經(jīng)過(guò)調(diào)查得到如下數(shù)據(jù):
間隔時(shí)間x/分 | 10 | 11 | 12 | 13 | 14 | 15 |
等候人數(shù)y/人 | 23 | 25 | 26 | 29 | 28 | 31 |
調(diào)查小組先從這6組數(shù)據(jù)中選取4組數(shù)據(jù)求線性回歸方程,再用剩下的2組數(shù)據(jù)進(jìn)行檢驗(yàn).檢驗(yàn)方法如下:先用求得的線性回歸方程計(jì)算間隔時(shí)間對(duì)應(yīng)的等候人數(shù),再求與實(shí)際等候人數(shù)y的差,若差值的絕對(duì)值都不超過(guò)1,則稱(chēng)所求方程是“恰當(dāng)回歸方程”.
(1)從這6組數(shù)據(jù)中隨機(jī)選取4組數(shù)據(jù),求剩下的2組數(shù)據(jù)的間隔時(shí)間相鄰的概率;
(2)若選取的是中間4組數(shù)據(jù),求y關(guān)于x的線性回歸方程,并判斷此方程是否是“恰當(dāng)回歸方程”.
附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:,離心率,是橢圓的左頂點(diǎn),是橢圓的左焦點(diǎn),,直線:.
(1)求橢圓方程;
(2)直線過(guò)點(diǎn)與橢圓交于、兩點(diǎn),直線、分別與直線交于、兩點(diǎn),試問(wèn):以為直徑的圓是否過(guò)定點(diǎn),如果是,請(qǐng)求出定點(diǎn)坐標(biāo);如果不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓: 的離心率為,短軸端點(diǎn)與兩焦點(diǎn)圍成的三角形面積為.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓交于兩點(diǎn),且過(guò)點(diǎn),為坐標(biāo)原點(diǎn),當(dāng)△為直角三角形,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,菱形中,,, 于.將沿翻折到,使,如圖2.
(Ⅰ)求證:平面平面;
(Ⅱ)求直線A′E與平面A′BC所成角的正弦值;
(Ⅲ)設(shè)為線段上一點(diǎn),若平面,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的方程為(),其離心率,分別為橢圓的左、右焦點(diǎn),為橢圓上的點(diǎn)(不在軸上),周長(zhǎng)為6.過(guò)橢圓右焦點(diǎn) 的直線與橢圓交于兩點(diǎn),為坐標(biāo)原點(diǎn),面積為.
(1)求橢圓的標(biāo)準(zhǔn)方程:
(2)求直線的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com