【題目】已知函數(shù)

(Ⅰ)判斷并證明的單調(diào)性;

(Ⅱ)若不等式,對恒成立,求的取值范圍.

【答案】(Ⅰ)當時,上是增函數(shù);時, 上是減函數(shù),在上是增函數(shù). 證明見解析. (Ⅱ)

【解析】

(Ⅰ),兩種情況進行討論可得出答案.
(Ⅱ)根據(jù)圖象可得,當時,不等式不是恒成立的,討論的情況滿足,當時,處取得最小值,所以,即可得出答案.

(Ⅰ)

時,上是增函數(shù);

時,令,解得

所以當時,,上是增函數(shù);

時,上是減函數(shù);

綜上所述:當時,上是增函數(shù);

時, 上是減函數(shù),在上是增函數(shù).

(Ⅱ)不等式,對恒成立,即上恒成立.

由(Ⅰ)可知,當時,函數(shù)的圖象如圖.

根據(jù)圖象可得,當時,不等式不是恒成立的.

, 不等式是恒成立的.

時,由(Ⅰ)可知,處取得最小值.

,所以,則

綜上所述:的取值范圍是:.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】解關(guān)于的不等式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱錐的底面為直角梯形,,,底面,且的中點.

1)求證:直線平面;

2)若,求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某次數(shù)學測驗共有12道選擇題,每道題共有四個選項,且其中只有一個選項是正確的,評分標準規(guī)定:每選對1道題得5分,不選或選錯得0分. 在這次數(shù)學測驗中,考生甲每道選擇題都按照規(guī)則作答,并能確定其中有9道題能選對;其余3道題無法確定正確選項,在這3道題中,恰有2道能排除兩個錯誤選項,另1題只能排除一個錯誤選項. 若考生甲做這3道題時,每道題都從不能排除的選項中隨機挑選一個選項作答,且各題作答互不影響.在本次測驗中,考生甲選擇題所得的分數(shù)記為

1)求的概率;

2)求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的短軸長為4,離心率為,斜率不為0的直線l與橢圓恒交于A,B兩點,且以AB為直徑的圓過橢圓的右頂點M

1)求橢圓的標準方程;

2)直線l是否過定點,如果過定點,求出該定點的坐標;如果不過定點,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)上的最大值為,.

1)若點的圖象上,求函數(shù)圖象的對稱中心;

2)將函數(shù)的圖象向右平移個單位,再將所得的圖象縱坐標不變,橫坐標縮小到原來的,得函數(shù)的圖象,若上為增函數(shù),求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在空間直角坐標系Oxyz中,已知正四棱錐PABCD的所有棱長均為6,底面正方形ABCD的中心在坐標原點,棱AD,BC平行于x軸,AB,CD平行于y軸,頂點Pz軸的正半軸上,點MN分別在線段PA,BD上,且

1)求直線MNPC所成角的大。

2)求銳二面角APND的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若,用“五點法”在給定的坐標系中,畫出函數(shù)[0,π]上的圖象.

(2)若偶函數(shù),求

(3)在(2)的前提下,將函數(shù)的圖象向右平移個單位后,再將得到的圖象上各點的橫坐標變?yōu)樵瓉淼?/span>4倍,縱坐標不變,得到函數(shù)的圖象,求的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以下說法中,正確的是_____.(填上所有正確說法的序號):

①已知角終邊上一點,則;

②函數(shù)的最小正周期是;

③把函數(shù)的圖象向右平移個單位長度可以得到的圖象;

④數(shù)的圖象關(guān)于對稱;

⑤函數(shù)上有零點,則實數(shù)的取值范圖是.

查看答案和解析>>

同步練習冊答案