已知集合A={x||x-a|≤2},B={x|
2x+6
x+2
>1}.
(Ⅰ)求集合A和集合B;
(Ⅱ)若A⊆B,求a的取值范圍.
考點:集合的包含關(guān)系判斷及應用
專題:集合
分析:(I)解絕對值不等式可求出集合A,解分式不等式可求出集合B;
(II)由A⊆B可得:a-2>-2,或a+2<-4,解得a的取值范圍.
解答: 解:(I)解|x-a|≤2得:a-2≤x≤a+2,
故集合A={x||x-a|≤2}=[a-2,a+2],
2x+6
x+2
>1得:x<-4或x>-2,
故集合B={x|
2x+6
x+2
>1}=(-∞,-4)∪(-2,+∞).
(II)由A⊆B可得:a-2>-2,或a+2<-4
解得a<-6,或a>0,
故a的取值范圍為:(-∞,-6)∪(0,+∞)
點評:本題考查的知識點是集合的包含關(guān)系判斷及應用,解不等式,其中解絕對值不等式和分式不等式求出集合A,B是解答的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知二項式(x2+
m
x
5展開式中各項系數(shù)和為-1,則二項式展開式中含x的項是( 。
A、80xB、-80x
C、160xD、-160x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

2013年9月22日,為應對臺風“天兔”侵襲,我校食堂做好了充分準備,儲備了至少三天的食物.食物在儲藏時,有些易于保存,而有些卻需要適當處理,如牛奶等,它們的保鮮時間會因儲藏時溫度的不同而不同.假定保鮮時間與儲藏溫度間的關(guān)系為指數(shù)型函數(shù)y=k•ax(k≠0,a>0且a≠1),若牛奶放在0℃的冰箱中,保鮮時間約為192h,放在22℃的廚房中,保鮮時間約為42h.
(1)寫出保鮮時間y(單位:h)關(guān)于儲藏溫度x(單位:℃)的函數(shù)解析式;
(2)請運用(1)的結(jié)論計算,若我校購買的牛奶至少要儲藏三天,則儲藏時的溫度最高約為多少?(精確到整數(shù)).
(參考數(shù)據(jù):lg3=0.4771,lg8=0.9031,lg7=0.8451,lg32=1.5051.)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正項數(shù)列{an}滿足:a1=
3
2
,an+1=
3an
2an+3

(Ⅰ)求通項an;
(Ⅱ)若數(shù)列{bn}滿足bn•an=3(1-
1
2n
),求數(shù)列{bn}的前n和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算下列各題
(1)52log53+log432-log3(log28)-
log23
log29

(2)lg500+lg
8
5
-
1
2
lg64+50(lg2+lg5)2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=5
3
sinxcosx+6cos2x+sin2x+
3
2

(Ⅰ)當x∈[
π
6
π
2
]時,求函數(shù)f(x)的值域;
(Ⅱ)在銳角△ABC中,sinC=
3
5
,f(A)=
15
2
,AB=2
3
,求AB邊上的高.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,已知a=30,S△ABC=105,其外接圓的半徑R=17,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

深圳科學高中致力于培養(yǎng)以科學、技術(shù)、工程和數(shù)學見長的創(chuàng)新型高中學生,“工程技術(shù)”專用教室是學校師生共建的創(chuàng)造者的平臺,該教室內(nèi)某設(shè)備D價值24萬元,D的價值在使用過程中逐年減少,從第2年到第5年,每年初D的價值比上年初減少2萬元;從第6年開始,每年初D的價值為上年初的25%,
(1)求第5年初D的價值a5;
(2)求第n年初D的價值an的表達式;
(3)若設(shè)備D的價值an大于2萬元,則D可繼續(xù)使用,否則須在第n年初對D更新,問:須在哪一年初對D更新?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若A={x|-3≤x≤4},B={x|2m-1≤x≤2m+1},A∩B=∅,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案