已知
a
=(2,1),
b
=(sinx,-cosx),x∈(0,π﹚,若
a
b
,則cosx的值為
 
考點(diǎn):平面向量共線(平行)的坐標(biāo)表示
專題:平面向量及應(yīng)用
分析:利用向量共線定理和三角函數(shù)的基本關(guān)系式即可得出.
解答: 解:∵
a
b
,∴-2cosx-sinx=0,即2cosx+sinx=0
聯(lián)立
2cosx+sinx=0
sin2x+cos2x=1
,且x∈(0,π),
∴sinx>0,cosx<0.
解得cosx=-
5
5

故答案為:-
5
5
點(diǎn)評:本題考查了向量共線定理和三角函數(shù)的基本關(guān)系式,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x-
4
x
-(4a+
1
a
)lnx,g(x)=a-
4
a
-(4x+
1
x
)lna(x>0),其中a是正常數(shù).若f′(1)=g′(
1
2
),求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果一個正方形的四個頂點(diǎn)都在三角形的三條邊上,稱該正方形是該三角形的內(nèi)接正方形,若銳角△ABC的面積為S,求其內(nèi)接正方形面積的最大值,并求此時正方形的邊長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓(x-a)2+y2=4的圓心坐標(biāo)為(3,0),則實(shí)數(shù)a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不等式|2x+m|≥4-|2x-2|對任意x∈R恒成立,則實(shí)數(shù)m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不等式|a-1|≥x+2y,對滿足x2+y2=5的一切實(shí)數(shù)x,y恒成立,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z1=3+i,z2=1+2i,則復(fù)數(shù)
.
z1
=
 
,
z1
z2
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知Sm,Sn分別表示等差數(shù)列{an}的前m項與前n項的和,且
Sm
Sn
=
m2
n2
,那么
am
an
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)f(x)=x2+
1
x
(x>0)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案