12.已知α是第三象限角.f(α)=$\frac{sin(π-α)cos(2π-α)tan(-α+\frac{3π}{2})}{cos(-α-π)}$.
(1)若cos(α-$\frac{3π}{2}$)=$\frac{1}{5}$,求f(α)的值;
(2)若α=-1920°,求f(α)的值.

分析 (1)由已知條件利用誘導(dǎo)公式求出sinα=-$\frac{1}{5}$,f(a)=cosα,再由α是第三象限角,利用同角三角函數(shù)關(guān)系式能求出結(jié)果.
(2)由α=-1920°,f(a)=cosα,利用誘導(dǎo)公式能求出結(jié)果.

解答 解:(1)∵cos(α-$\frac{3π}{2}$)=$\frac{1}{5}$,∴sinα=-$\frac{1}{5}$,
∵α是第三象限角,
∴f(a)=$\frac{sin(π-α)cos(2π-α)tan(-α+\frac{3π}{2})}{cos(-α-π)}$
=$\frac{sinα(-cosα)cotα}{-cosα}$
=cosα
=-$\sqrt{1-(-\frac{1}{5})^{2}}$
=-$\frac{2\sqrt{6}}{5}$.
(2)∵α=-1920°=-$\frac{32π}{3}$,
∴f(a)=$\frac{sin(π-α)cos(2π-α)tan(-α+\frac{3π}{2})}{cos(-α-π)}$
=cosα
=cos(-$\frac{32π}{3}$)=cos$\frac{32π}{3}$
=cos$\frac{2π}{3}$
=-cos$\frac{π}{3}$
=-$\frac{1}{2}$.

點評 本題考查三角函數(shù)值的求法,是中檔題,解題要認真審題,注意誘導(dǎo)公式和同角三角函數(shù)關(guān)系式的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖所示,有一個堤壩,原斜坡AB長50m,坡角∠ABC=40°,現(xiàn)要將斜坡的坡角改成25°,即∠D=25°,那么斜坡的坡底要延長多少(精確到0.1m)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.若f(x)=x3-ax在(-∞,-1)內(nèi)是增函數(shù),在(-1,1)內(nèi)是減函數(shù),求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)一直線上三點A,B,P滿足$\overrightarrow{AP}$=m$\overrightarrow{PB}$(m≠-1),O是直線所在平面內(nèi)一點,則$\overrightarrow{OP}$用$\overrightarrow{OA}$,$\overrightarrow{OB}$表示為$\frac{1}{m+1}$$\overrightarrow{OA}$+$\frac{m}{m+1}$$\overrightarrow{OB}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.求下列函數(shù)的值域.
(1)y=3-2sin2x;
(2)y=|sinx|+sinx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=x3+bx2+cx+d的圖象如圖所示,則函數(shù)y=log${\;}_{\frac{1}{2}}$(x2+$\frac{2}{3}$bx+$\frac{c}{3}$)的單調(diào)減區(qū)間為( 。
A.($\frac{1}{2}$,+∞)B.(3,+∞)C.(-∞,-$\frac{1}{2}$)D.(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)O是△ABC所在平面上一點,H是△ABC的垂心,并且$\overrightarrow{OH}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$,∠A=60°,∠B=45°,|$\overrightarrow{BC}$|=2$\sqrt{3}$.
(1)求△ABC的外接圓半徑的長;
(2)求$\overrightarrow{|OH|}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.直線y=m(m>0)與函數(shù)y=|log2x|的圖象交于A(x1,y1)、B(x2,y2)(x1<x2),下列結(jié)論正確的是①②④(填序號)
①0<x1<1<x2;②x1x2=1;③2${\;}^{{x}_{1}}$+2${\;}^{{x}_{2}}$<4;④2${\;}^{{x}_{1}}$+2${\;}^{{x}_{2}}$>4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)P和Q是兩個集合,定義集合P+Q={x|x∈P}或x∈Q且x∉P∩Q.若P={x|x2-5x-6≤0},Q={x|y=log2(x2-2x-15)},那么P+Q等于( 。
A.[-1,6]B.(-∞,-1]∪[6,+∞)C.(-3,5)D.(-∞,-3)∪[-1,5]∪(6,+∞)

查看答案和解析>>

同步練習(xí)冊答案