1.已知點P(cosθ,tanθ)在第二象限,則角θ的終邊在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

分析 由題意利用三角函數(shù)在各個象限中的符號,判斷角θ的終邊所在的象限.

解答 解:∵已知點P(cosθ,tanθ)在第二象限,∴cosθ<0,tanθ>0,
則角θ的終邊在第三象限,
故選:C.

點評 本題主要考查任意角的三角函數(shù)的定義,三角函數(shù)在各個象限中的符號,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=cos$(\frac{π}{3}x+\frac{π}{3})-2co{s}^{2}\frac{π}{6}x$
(1)求函數(shù)f(x)的周期T;
(2)求f(x)的單調遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.若函數(shù)y=2x2-ax+3有一個零點為$\frac{3}{2}$,則f(1)=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.如圖,在矩形 OABC中,$\overrightarrow{{A}{B}}=3\overrightarrow{{A}{E}}$,$\overrightarrow{{B}C}=3\overrightarrow{FC}$,若$\overrightarrow{{O}{B}}=λ\overrightarrow{{O}{E}}+μ\overrightarrow{{O}F}$(λ,μ∈R),則λμ等于(  )
A.$\frac{9}{4}$B.$\frac{9}{16}$C.$\frac{4}{9}$D.$\frac{16}{9}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.f(x)=logax,g(x)=2loga(2x+t-2),(a>0,a≠1,t∈R).
(1)當$t=4,x∈[{\frac{1}{4},2}]$時,F(xiàn)(x)=g(x)-f(x)的最小值是-2,求a的值;
(2)當$0<a<1,x∈[{\frac{1}{4},2}]$時,有f(x)≥g(x)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知函數(shù)f(x)=|x-2|,方程a[f(x)]2-f(x)+1=0有四個不同的實數(shù)解,則實數(shù)a的取值范圍是(0,$\frac{1}{4}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知直線m,l和平面α,β,且l⊥α,m?β,給出下列四個命題:
①α∥β⇒l⊥m②α⊥β⇒l∥m③l∥m⇒α⊥β④l⊥m⇒α∥β
其中真命題的有①③(請?zhí)顚懭空_命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知下列命題:①若$\overrightarrow{a}•\overrightarrow$<0,則$\overrightarrow$與$\overrightarrow{a}$的夾角為鈍角;②a,b∈C,則“ab∈R”是“a,b互為共軛復數(shù)”的必要非充分條件;③一個骰子連續(xù)投2次,點數(shù)和為4的概率為$\frac{1}{9}$;④若n為正奇數(shù),則6n+${C}_{n}^{1}{6}^{n-1}$+${C}_{n}^{2}{6}^{n-2}$+…+${C}_{n}^{n-1}6-1$被8除的余數(shù)是5,其中正確的序號是②④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知函數(shù)f(x)=$\frac{2}{3}$x3-2ax2-3x(a∈R),若曲線y=f(x)在點P(1,f(1))處的切線與直線x+3y+1=0垂直,則實數(shù)a的值為(  )
A.-1B.1C.-$\frac{1}{6}$D.$\frac{1}{6}$

查看答案和解析>>

同步練習冊答案