等差數(shù)列{an}的通項(xiàng)公式an=2n-1,設(shè)數(shù)列{
1
anan+1
},其前n項(xiàng)和為Sn,則Sn等于(  )
A、
2n
2n+1
B、
n
2n+1
C、
n
2n-1
D、以上都不對
考點(diǎn):數(shù)列的求和,等差數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:
1
anan+1
=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)
,利用錯(cuò)位相減法能求出Sn
解答: 解:∵等差數(shù)列{an}的通項(xiàng)公式an=2n-1,
1
anan+1
=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)
,
∴Sn=
1
2
(1-
1
3
+
1
3
-
1
5
+…+
1
2n-1
-
1
2n+1

=
1
2
(1-
1
2n+1
)

=
n
2n+1

故選:B.
點(diǎn)評:本題考查數(shù)列的前n項(xiàng)和的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意裂項(xiàng)法的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=5+x+cosx(x∈(0,2π))的單調(diào)增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合M={x|log2x>1},N={x|x2≤9},則M∩N=( 。
A、(1,3)
B、(1,3]
C、[2,3]
D、(2,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
x
,若f′(x0)=
1
2
,則x0等于( 。
A、-1B、1C、2D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果角α的終邊過點(diǎn)(2sin60°,-2cos60°),則sinα的值等于( 。
A、
1
2
B、-
1
2
C、-
3
2
D、-
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2sinxcosx的最小值是( 。
A、-1B、-2C、2D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C:
x2
a2
-
y2
b2
=1的實(shí)軸長為2
5
,右焦點(diǎn)F到漸近線的距離為
5
,則C的方程為(  )
A、
x2
5
-
y2
5
=1
B、
x2
20
-
y2
5
=1
C、
x2
25
-
y2
5
=1
D、
x2
5
-
y2
25
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

29π
6
是(  )
A、第一象限角
B、第二象限角
C、第三象限角
D、第四象限角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
4x
4x+2

(Ⅰ)求f(x)+f(1-x),x∈R的值;
(Ⅱ)若數(shù)列{an}滿足an=f(0)+f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)+f(1)(n∈N*),求數(shù)列{an}的通項(xiàng)公式;
(Ⅲ)若數(shù)列{bn}滿足bn=2n+1•an,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊答案