在面積為12的中,已知,,試建立適當?shù)淖鴺讼,求出分別以為左、右焦點且過的雙曲線方程.
所求雙曲線方程為
所在直線為軸,線段的中垂線為軸建立直角坐標系,設雙曲線方程為,為半焦距,由題設得的直線方程分別為,聯(lián)立兩式解得點
從而得的面積,
進而得點,即得
由雙曲線定義,得,
故所求雙曲線方程為
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

+=-1表示焦點在y軸上的雙曲線,則它的半焦距c的取值范圍是(    )
A.(1,+∞)B.(0,1)C.(1,2)D.與k有關,無法確定

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

雙曲線C1:-=1和C2:-=-1的離心率分別是e1和e2(a>0,b>0),則e1+e2的最小值是_____________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知雙曲線-=1的焦點為F1、F2,點M在雙曲線上且MF1⊥x軸,則F1到直線F2M的距離為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知雙曲線與橢圓有共同的焦點,且以為漸近線.
(1)求雙曲線方程.
(2)求雙曲線的實軸長.虛軸長.焦點坐標及離心率

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

.(本小題滿分12分)已知雙曲線的兩個焦點的坐標為,離心率.(1)求雙曲線的標準方程;(2)設是(1)中所求雙曲線上任意一點,過點的直線與兩漸近線分別交于點,若,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,傾斜角為的直線經(jīng)過拋物線y2=8x的焦點F,且與拋物線交于A、B兩點.
(1)求拋物線焦點F的坐標及準線l的方程;
(2)若為銳角,作線段AB的垂直平分線m交x軸于點P,證明|FP|-|FP|cos2為定值, 
并求此定值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若雙曲線的兩個焦點分別為F1F2,點P為雙曲線上一點,∠F1PF2=90°,則△F1PF2的面積等于(  )
A.B.1C.3D.6

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知雙曲線中心在原點,以坐標軸為對稱軸且與圓相交于A(4, -1),若此圓在點A的切線與雙曲線的一條漸進線平行,則雙曲線的方程為——————

查看答案和解析>>

同步練習冊答案