已知點M與兩個定點O(0,0),A(3,0)的距離的比為
1
2
,點M得軌跡為曲線C.
(1)求曲線C的軌跡方程;
(2)過原點且傾斜角為135°的直線交曲線C于A、B兩點,求弦AB的長.
考點:直線和圓的方程的應(yīng)用
專題:綜合題,直線與圓
分析:(1)設(shè)M(x,y),利用點M與兩個定點O(0,0),A(3,0)的距離的比為
1
2
,建立方程,化簡可得曲線C的軌跡方程;
(2)求出圓心與半徑,圓心到直線的距離,利用勾股定理,即可求弦AB的長.
解答: 解:(1)設(shè)M(x,y),則
∵點M與兩個定點O(0,0),A(3,0)的距離的比為
1
2
,
x2+y2
(x-3)2+y2
=
1
2

化簡可得(x+1)2+y2=4…(6分)
(2)由(x+1)2+y2=4,可知圓心坐標(biāo)為(-1,0),半徑為2,則
∵直線過原點且傾斜角為135°,
∴直線方程為y=-x,即x+y=0,
∴圓心到直線的距離為
1
2
,
∴弦AB的長為2
4-
1
2
=
14
…(12分)
點評:本題考查軌跡方程,考查直線與圓的位置關(guān)系,考查學(xué)生的計算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=(x-1)+(2x-1)i的模小于
10
,則實數(shù)x的取值范圍是( 。
A、-
4
5
<x<2
B、x<2
C、x>-
4
5
D、x>2或x<-
4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三邊方程是AB:5x-y-12=0,BC:x+3y+4=0,CA:x-5y+12=0,
(1)求∠A的大;
(2)求BC邊上的高所在的直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=f(x)滿足f(-2)=f(4)=-16,且f(x)最大值為2.
(1)求函數(shù)y=f(x)的解析式;
(2)求函數(shù)y=f(x)在[t,t+1](t>0)上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的中心在坐標(biāo)原點,焦點在x軸上,它的一個頂點B的坐標(biāo)為(0,1),離心率為
2
2
.直線l與橢圓C交于M,N兩點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若橢圓C的右焦點F恰好為△BMN的垂心,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}的公比為正數(shù),且a1=2,a3=a2+4.
(1)求{an}的通項公式;
(2)設(shè){bn}是首項為1,公差為2的等差數(shù)列,求數(shù)列{an•bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

波波斯基以游戲方式?jīng)Q定是否參加學(xué)校同人社還是學(xué)校芭蕾舞團,游戲規(guī)則為:以O(shè)為起點(如圖正方體ABCD-EFGH的中心為點O),再從A,B,C,D,E,F(xiàn),G,H這8個頂點中任取兩點為終點分別得到兩個向量,記這兩個向量的數(shù)量積為X,若X>0就參加芭蕾舞團,否則就參加同人社.
(Ⅰ)求波波參加學(xué)校芭蕾舞社的概率;
(Ⅱ)若分別在左面四個頂點A,D,H,E處放置藍球,右面四個頂點B,C,G,F(xiàn)處放置紅球,波波斯基在上底面隨機抽取2個球,在下底面隨機抽取3個球,記抽得的紅球個數(shù)為ξ,寫出隨機變量ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓x2+y2-2x-1=0關(guān)于直線2x-y+3=0對稱的圓的方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2
3
sinxcosx+2cos2x-1,(x∈R)的最小正周期是
 

查看答案和解析>>

同步練習(xí)冊答案