11.已知sin($\frac{π}{6}$-α)-cosα=$\frac{1}{3}$,則cos(2α+$\frac{π}{3}$)=( 。
A.$\frac{5}{18}$B.-$\frac{5}{18}$C.$\frac{7}{9}$D.-$\frac{7}{9}$

分析 由條件利用兩角和差的正弦公式求得sin(α+$\frac{π}{6}$)=-$\frac{1}{3}$,再利用二倍角的余弦公式求得cos(2α+$\frac{π}{3}$)的值.

解答 解:∵sin($\frac{π}{6}$-α)-cosα=$\frac{1}{2}$cosα-$\frac{\sqrt{3}}{2}$sinα-cosα=-sin(α+$\frac{π}{6}$)=$\frac{1}{3}$,∴sin(α+$\frac{π}{6}$)=-$\frac{1}{3}$,
則cos(2α+$\frac{π}{3}$)=1-2sin2(α+$\frac{π}{6}$)=$\frac{7}{9}$,
故選:C.

點(diǎn)評(píng) 本題主要考查兩角和差的正弦公式,二倍角的余弦公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)$0≤x≤\frac{π}{4}$,則$\sqrt{1-2sinxcosx}$=(  )
A.cosx-sinxB.sinx-cosxC.cosx+sinxD.-cosx-sinx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)全集I=R,集合A={x|x≥2},B={x|x$<-\sqrt{2}$},則(∁RA)∩B={x|x$<-\sqrt{2}$,x∈R}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)命題P:“?x∈R,x2-2x>a”,命題Q:“?x∈R,x2+2ax+2=0”;如果“P或Q”為真,“P且Q”為假,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知命題甲為:x>0;命題乙為x2>0,那么( 。
A.甲是乙的充要條件B.甲是乙的充分非必要條件
C.甲是乙的必要不充分條件D.甲是乙的既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=|x+a|+|x-2|.
(1)當(dāng)a=-4時(shí),求不等式f(x)≥6的解集;
(2)若f(x)≤|x-3|的解集包含[0,1],求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{3}+{x}^{2},x<1}\\{alnx,x≥1}\end{array}\right.$,a∈R.
(1)當(dāng)x<1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(2)對(duì)任意給定的正實(shí)數(shù)a,曲線y=f(x)上是否存在兩點(diǎn)P,Q,使得△POQ是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在y軸上?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若f(x)=2x+3,g(x+2)=f(x-1),則g(x)的表達(dá)式為(  )
A.g(x)=2x+1B.g(x)=2x-1C.g(x)=2x-3D.g(x)=2x+7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖所示,AC為球O的直徑,BC是截面圓O1的直徑,點(diǎn)D在圓O1上,根據(jù)球的截面性質(zhì):球心和截面圓心的連線垂直于截面,求證:
(1)AB⊥平面BCD;
(2)平面ADC⊥平面ABD.

查看答案和解析>>

同步練習(xí)冊(cè)答案