2010年,我國(guó)南方省市遭遇旱澇災(zāi)害,為防洪抗旱,某地區(qū)大面積植樹造林,如圖,在區(qū)域{(x,y)|x≥0,y≥0}內(nèi)植樹,第一棵樹在A1(0,1)點(diǎn),第二棵樹在B1(1,1)點(diǎn),第三棵樹在C1(,0)點(diǎn),第四棵樹在C2(2,0)點(diǎn),接著按圖中箭頭方向,每隔一個(gè)單位種一顆樹,那么,第2014棵樹所在的點(diǎn)的坐標(biāo)是
 
考點(diǎn):歸納推理
專題:規(guī)律型
分析:將OA1B1C1設(shè)為第一個(gè)正方形,種植3棵樹,依次下去,歸納出第二個(gè)正方形,第三個(gè)正方形種植7棵樹,…,得出規(guī)律,計(jì)算出前43個(gè)正方形共有多少棵樹,從而得到第2014棵樹所在的點(diǎn)的坐標(biāo).
解答: 解:OA1B1C1設(shè)為第一個(gè)正方形,種植3棵樹,
依次下去,第二個(gè)正方形種植5棵樹,
第三個(gè)正方形種植7棵樹,

它們構(gòu)成一個(gè)等差數(shù)列,公差為2.
故前43個(gè)正方形共有43×3+
43×42
2
×2=1935棵樹,
又2014-1935=79,79-44=35,45-35=10,
因此第2011棵樹在(10,44)點(diǎn)處.
故答案為:(10,44)
點(diǎn)評(píng):本題考點(diǎn)是進(jìn)行簡(jiǎn)單的合情推理,由圖形觀察出規(guī)律是解題的重點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從某校高三年級(jí)隨機(jī)抽取一個(gè)班,對(duì)該班45名學(xué)生的高校招生體檢表中視力情況進(jìn)行統(tǒng)計(jì),其結(jié)果的頻率分布直方圖如圖.若某高校A專業(yè)對(duì)視力的要求在0.9以上,則該班學(xué)生中能報(bào)A專業(yè)的人數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線ky2-8kx2=8的一個(gè)焦點(diǎn)為(0,3),則該雙曲線漸近線方程為
 
(填一般方程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若x>-2,則函數(shù)y=x+
9
x+2
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在兩個(gè)學(xué)習(xí)基礎(chǔ)相當(dāng)?shù)陌嗉?jí)實(shí)行某種教學(xué)措施的實(shí)驗(yàn),測(cè)試結(jié)果見下列聯(lián)表,
優(yōu)、良、中 總計(jì)
實(shí)驗(yàn)班 48 2 50
對(duì)比班 38 12 50
總計(jì) 86 14 100
隨機(jī)變量K2的觀測(cè)值為
 
.(保留四個(gè)有效數(shù)字)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin
πx
3
,則f(1)+f(2)+…+f(2014)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三次函數(shù)f(x)=
a
3
x3+
b
2
x2+cx+d(a<b)
在R上單調(diào)遞增,則
a+2b+3c
b-a
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面α過點(diǎn)A(3,0,0),B(0,3,0),C(0,0,3),則原點(diǎn)O到平面α的距離為( 。
A、3
B、6
C、
3
D、2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

參數(shù)方程
x=-3+2cosθ
y=1+2sinθ
(θ為參數(shù))化為普通方程是( 。
A、(x-1)2+(y+3)2=1
B、(x+3)2+(y-1)2=4
C、(x-2)2+(y+2)2=4
D、x+y-2=0

查看答案和解析>>

同步練習(xí)冊(cè)答案