設(shè)函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),若對任意x∈R都有f′(x)>f(x)成立,則( 。
A、f(ln2014)<2014f(0)
B、f(ln2014)=2014f(0)
C、f(ln2014)>2014f(0)
D、f(ln2014)與2014f(0)的大小關(guān)系不確定
考點:導(dǎo)數(shù)的運算
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:構(gòu)造函數(shù)g(x)=
f(x)
ex
,利用導(dǎo)數(shù)可判斷g(x)的單調(diào)性,由單調(diào)性可得g(ln2014)與g(0)的大小關(guān)系,整理即可得到答案.
解答: 令g(x)=
f(x)
ex
,則g′(x)=
f′(x)•ex-f(x)•e x
e2x
=
f′(x)-f(x)
ex
,
因為對任意x∈R都有f′(x)>f(x),
所以g′(x)>0,即g(x)在R上單調(diào)遞增,
又ln2014>0,所以g(ln2014)>g(0),即
f(ln2014)
eln2014
f(0)
e0
,
所以 f(ln2014)>2014f(0),
故選:C.
點評:本題考查導(dǎo)數(shù)的運算及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,屬中檔題,解決本題的關(guān)鍵是根據(jù)選項及已知條件合理構(gòu)造函數(shù),利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知A、M、B三點共線,m
OA
-3
OM
+
OB
=
0
,若
AM
=t
BA
,則實數(shù)t的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y2=4x上一點P到直線x=-1的距離與到點Q(2,2)的距離之差的最大值為(  )
A、3
B、
3
C、5
D、
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果實數(shù)x,y滿足等式y(tǒng)2=x,那么
y
x+1
的最大值是( 。
A、-1
B、1
C、-
1
2
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)雙曲線
x2
a2
-
y2
9
=1(a>0)的漸近線方程為3x±2y=0,則
a
1
1
x
)dx的值為( 。
A、ln2B、0C、ln3D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若平面向量
a
b
的夾角為60°,且|
a
|=2|
b
|,則( 。
A、
a
⊥(
b
+
a
B、
a
⊥(
b
-
a
C、
b
⊥(
b
+
a
D、
b
⊥(
b
-
a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓臺側(cè)面積為2π,母線l與底面所成角為60°,上底半徑為x,下底半徑為y (y>x>0),則函數(shù)y=f (x)的圖象是(  )(注:圓臺側(cè)面積公式S=π(r1+r2)l)
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個多面體的直觀圖和三視圖所示,M是AB的中點,一只蝴蝶在幾何體ADF-BCE內(nèi)自由飛翔,由它飛入幾何體F-AMCD內(nèi)的概率為( 。
A、
3
4
B、
2
3
C、
1
3
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=[ax2+(a-1)2x-a2+3a-1]ex(a∈R).
(Ⅰ)若函數(shù)f(x)在(2,3)上單調(diào)遞增,求實數(shù)a的取值范圍;
(Ⅱ)若a=0,設(shè)g(x)=
f(x)
ex
+lnx-x,斜率為k的直線與曲線y=g(x)交于A(x1,y1),B(x2,y2)(其中x1<x2)兩點,證明:(x1+x2)k>2.

查看答案和解析>>

同步練習(xí)冊答案