某商店經(jīng)營一批進(jìn)價為每件4元的商品,在市場調(diào)查時得到,此商品的銷售單價x與日銷售量y之間的一組數(shù)據(jù)滿足:
.
x
=6.5,
.
y
=7,
5
i=1
(xi-
.
x
)  (yi-
.
y
)  =-11
5
i=1
(xi-
.
x
2
=5
,則當(dāng)銷售單價x定為(取整數(shù))
 
 元時,日利潤最大.
考點:線性回歸方程
專題:概率與統(tǒng)計
分析:根據(jù)已知中
.
x
=6.5,
.
y
=7,
5
i=1
(xi-
.
x
)  (yi-
.
y
)  =-11
,
5
i=1
(xi-
.
x
2
=5
,求出回歸直線方程,進(jìn)而得到日利潤的表達(dá)式,進(jìn)而根據(jù)二次函數(shù)的圖象和性質(zhì)可估計日利潤最大值.
解答: 解:∵
5
i=1
(xi-
.
x
)  (yi-
.
y
)  =-11
,
5
i=1
(xi-
.
x
2
=5
,
∴b=
5
i=1
(xi-
.
x
)(yi-
.
y
)
5
i=1
(xi-
.
x
)
2
=-
11
5
=-2.2,
.
x
=6.5,
.
y
=7代入得:a=
.
y
-b
.
x
=21.3,
y
關(guān)于
x
的回歸方程為
y
=-2.2x+21.3,
故日利潤的解析式為:Z=(-2.2x+21.3)(x-4)=-2.2x2+30.1x-85.2,
當(dāng)x=
30.1
2.2×2
≈7時,日利潤最大,
故答案為:7
點評:統(tǒng)計也是高考新增的考點,回歸直線方程的求法,又是統(tǒng)計中的一個重要知識點,其系數(shù)公式及性質(zhì)要求大家要熟練掌握并應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在平行四邊形ABCD中,AD=2AB=2,∠BAD=60°,M、N分別是對角線BD、AC上的點,AC、BD相交于點O,已知BM=
1
3
BO,ON=
1
3
OC.設(shè)向量
AB
=
a
,
AD
=
b

(1)試用
a
,
b
表示
MN

(2)求|
MN
|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)x,y滿足x>1,y>1,且logx2+logy4=1,則log2(xy)的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知甲盒內(nèi)有大小相同的1個紅球和3個黑球,乙盒內(nèi)有大小相同的2個紅球和3個黑球.現(xiàn)從甲、乙兩個盒內(nèi)各任取2個球,設(shè)ξ為取出的4個球中紅球的個數(shù),則ξ的數(shù)學(xué)期望為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列A:a1,a2,…an(n>2),記集合TA={x|x=ai+aj,1≤i<j≤n},則當(dāng)數(shù)列A:2,4,6,8,10時,集合TA的元素個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

號碼為1、2、3、4、5、6的六個大小相同的球,放入編號為1、2、3、4、5、6的六個盒子中,每個盒子只能放一個球,若3號球只能放在1號或2號盒子中,4號球不能放在4號盒子中,則不同的放法有
 
種(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將偶數(shù)按如圖所示的規(guī)律排列下去,且用amn表示位于從上到下第m行,從左到右n列的數(shù),比如a22=6,a43=18,若amn=2014,則有( 。
 
A、m=44,n=16
B、m=44,n=29
C、m=45,n=16
D、m=45,n=29

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義:在數(shù)列{an}中,若滿足
an+2
an+1
-
an+1
an
=d(n∈N+,d 為常數(shù)),稱{an}為“等差比數(shù)列”.已知在“等差比數(shù)列”{an}中,a1=a2=1,a3=3,則
a2014
a2012
=( 。
A、4×20122-1
B、4×20132-1
C、4×20142-1
D、4×20132

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(2,3),
b
=(-4,7),則
b
a
上的投影為( 。
A、
13
5
B、
65
5
C、
13
D、
65

查看答案和解析>>

同步練習(xí)冊答案