【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知直線為參數(shù)),曲線為參數(shù)).

(1)設(shè)相交于兩點,求;

(2)若把曲線上各點的橫坐標(biāo)壓縮為原來的倍,縱坐標(biāo)壓縮為原來的倍,得到曲線,設(shè)點是曲線上的一個動點,求它到直線的距離的最小值.

【答案】(1)的普通方程為, 的普通方程為,(2)

【解析】試題分析:(1)將直線中的xy代入到直線C1中,即可得到交點坐標(biāo),然后利用兩點間的距離公式即可求出|AB|.
(2)將直線的參數(shù)方程化為普通方程,曲線C2任意點P的坐標(biāo),利用點到直線的距離公式P到直線的距離d,分子合并后利用兩角和與差的正弦函數(shù)公式及特殊角的三角函數(shù)值化為一個角的正弦函數(shù),與分母約分化簡后,根據(jù)正弦函數(shù)的值域可得正弦函數(shù)的最小值,進而得到距離d的最小值即可.

試題解析:

解:(1)的普通方程為, 的普通方程為

聯(lián)立方程組解得的交點為,則;

(2)的參數(shù)方程為為參數(shù)),故點的坐標(biāo)是,從而點到直線的距離是,

由此當(dāng)時, 取得最小值,且最小值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)是定義在R上的增函數(shù),且對于任意的x都有f(1﹣x)+f(1+x)=0恒成立.如果實數(shù)m、n滿足不等式組 , 那么m2+n2的取值范圍是( 。
A.(3,7)
B.(9,25)
C.(13,49)
D.(9,49)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)f(x)與g(x)相等的一組是( 。
A.f(x)=x﹣1,g(x)=﹣1
B.f(x)=x2 , g(x)=(4
C.f(x)=log2x2 , g(x)=2log2x
D.f(x)=tanx,g(x)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),曲線在點處的切線與直線垂直(其中為自然對數(shù)的底數(shù)).

(Ⅰ)求的解析式及單調(diào)遞減區(qū)間;

(Ⅱ)若函數(shù)無零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1, 在直角梯形中, , 為線段的中點. 沿折起,使平面 平面,得到幾何體,如圖2所示.

1)求證: 平面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓與y軸的正半軸相交于點M,且橢圓E上相異兩點A、B滿足直線MA,MB的斜率之積為

(Ⅰ)證明直線AB恒過定點,并求定點的坐標(biāo);

(Ⅱ)求三角形ABM的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分13分)已知函數(shù)為常數(shù),

(1)若是函數(shù)的一個極值點,求的值;

(2)求證:當(dāng)時,上是增函數(shù);

(3)若對任意的,總存在,使不等式成立,求正實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的三個頂點為, 的中點.求:

(1) 所在直線的方程;

(2) 邊上中線所在直線的方程;

(3) 邊上的垂直平分線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知公差大于零的等差數(shù)列的前項和為,且,

(1)求數(shù)列的通項公式;

(2)若數(shù)列是等差數(shù)列,且,求非零常數(shù)的值.

(3)設(shè)為數(shù)列的前項和,是否存在正整數(shù),使得任意的成立?若存在求出的最小值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案