△ABC中,CA=8,AB=5,∠BAC=60°,則邊BC的長為
 
考點:余弦定理
專題:解三角形
分析:利用余弦定理列出關(guān)系式,將CA,AB及cos∠BAC代入計算即可求出BC的長.
解答: 解:∵△ABC中,CA=b=8,AB=c=5,∠BAC=60°,
∴由余弦定理得:a2=b2+c2-2bccos∠BAC=64+25-40=49,
解得:a=7,
則BC=a=7.
故答案為:7
點評:此題考查了余弦定理,以及特殊角的三角函數(shù)值,熟練掌握余弦定理是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

用秦九韶算法計算多項式f(x)=1+8x+7x2+5x4+4x5+3x6在x=5時所對應(yīng)的v4的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若某空間幾何體的三視圖如圖所示,則該幾何體的體積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
lim
x→4
f(x)-f(4)
x-4
=-2
,則
lim
t→0
f(4-t)-f(4)
2t
=( 。
A、4B、-4C、1D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知幾何體的三視圖如圖所示,可得這個幾何體的體積是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式組
2x-y+2≥0
x-2y-2≤0
x+y≤2

(Ⅰ)畫出不等式組表示的平面區(qū)域;     
(Ⅱ)求z=x-y的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)x,y滿足約束條件
x+y-1≤0
x-y+1≥0
y≥0
,則y-2x的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={1,2},B={2,3,m},若A∩B=A,則實數(shù)m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“1,x,9成等比數(shù)列”是“x=3”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案