(1)已知sin(
7
2
π-α)=-
1
2
,求sin2
9
2
π-α)+cos(3π-α)的值;
(2)證明:
1-cos2α
1+cos2α
=tan2α.
考點(diǎn):二倍角的余弦,運(yùn)用誘導(dǎo)公式化簡(jiǎn)求值
專題:計(jì)算題,三角函數(shù)的求值
分析:(1)利用誘導(dǎo)公式化簡(jiǎn),即可得出結(jié)論;
(2)利用二倍角的余弦公式,代入化簡(jiǎn),即可證明結(jié)論.
解答: (1)解:∵sin(
7
2
π-α)=-
1
2

∴cosα=
1
2
,
∴sin2
9
2
π-α)+cos(3π-α)=cos2α-cosα=-
1
4
;
(2)證明:
1-cos2α
1+cos2α
=
2sin2α
2cos2α
=tan2α.
點(diǎn)評(píng):本題考查誘導(dǎo)公式、二倍角的余弦公式,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,滿足a=1,A=30°,B=45°,則b=( 。
A、
2
B、
3
C、2
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,三棱錐V-ABC中,VA=VB=AC=BC=2VC,∠ACB=120°.
(1)求證:AB⊥VC;
(2)求二面角V-AB-C的度數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x2-x-2<0},B={x|m<x<2m+1}
(1)求∁RA;
(2)若B∩(∁RA)=B,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某化工廠生產(chǎn)的某種化工產(chǎn)品,當(dāng)年產(chǎn)量在150噸至250噸之間時(shí),其生產(chǎn)的總成本y(萬(wàn)元)與年產(chǎn)量x(噸)之間的函數(shù)關(guān)系式近似地表示為y=
x2
10
-30x+4000.
問(wèn):每噸平均出廠價(jià)為16萬(wàn)元,年產(chǎn)量為多少噸時(shí),可獲得最大利潤(rùn)?并求出最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正項(xiàng)數(shù)列{an}的首項(xiàng)a1=1,前n項(xiàng)和Sn滿足an=
Sn
+
Sn-1
(n≥2).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若bn=
1
Sn
Sn+3
,記數(shù)列{bn}的前n項(xiàng)和為Tn,求證:Tn
11
18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題p:“函數(shù)f(x)=2x+
a
2x
在區(qū)間[4,+∞)上遞增”;命題Q:“g(x)=log2x-
a
log2x
在區(qū)間[4,+∞)上遞增”.若命題p與命題Q有且僅有一個(gè)真,求實(shí)數(shù)a的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=
x2+4x+3     x<0
3x+3             x≥0
,求出該函數(shù)在下列各條件下的值域:
(1)x∈R;
(2)x∈[-3,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)若函數(shù)f(x+1)=x2+2x,求函數(shù)f(x)的解析式.
(2)已知f(x)+2f(
1
x
)=3x+1,求函數(shù)f(x)的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案