設(shè)點(diǎn)P在曲線上,點(diǎn)Q在曲線上,則|PQ|最小值為(     )
A.B.C.D.
B.

試題分析:因?yàn)楹瘮?shù)互為反函數(shù)所以它們的圖象關(guān)于直線對(duì)稱,要使最小,則必有過兩點(diǎn)的切線斜率和的斜率相等,對(duì)于曲線,令,得,故點(diǎn)坐標(biāo)為;同理,對(duì)于曲線,令,得,所以點(diǎn)坐標(biāo)為,綜上,最小值為,選B.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù).
(1)若時(shí),求處的切線方程;
(2)當(dāng)時(shí),,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

若函數(shù)的圖象與直線為常數(shù))相切,并且切點(diǎn)的橫坐標(biāo)依次成等差數(shù)列,且公差為
(I)求的值;
(Ⅱ)若點(diǎn)圖象的對(duì)稱中心,且,求點(diǎn)A的坐標(biāo)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù) ().
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)試通過研究函數(shù))的單調(diào)性證明:當(dāng)時(shí),;
(Ⅲ)證明:當(dāng),且均為正實(shí)數(shù),  時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)F(x )=x2+aln(x+1)
(I)若函數(shù)y=f(x)在區(qū)間[1,+∞)上是單調(diào)遞增函數(shù),求實(shí)數(shù)a的取值范圍;
(II)若函數(shù)y=f(x)有兩個(gè)極值點(diǎn)x1,x2,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)的單調(diào)減區(qū)間為                   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022002310479.png" style="vertical-align:middle;" />,且函數(shù)的圖象關(guān)于直線對(duì)稱,當(dāng)時(shí),,(其中的導(dǎo)函數(shù)),若,則的大小關(guān)系是(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù),,設(shè)函數(shù),且函數(shù)的零點(diǎn)均在區(qū)間內(nèi),則的最小值為(     )
A.11B.10C.9D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè),若,則(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案