已知x,y滿足約束條件
x-4y≤-3
3x+5y≤25
x≥1
,z=|3x+4y+3|的最大值為
 
考點:簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對應(yīng)的平面區(qū)域,設(shè)m=3x+4y+3,利用目標函數(shù)的幾何意義,利用數(shù)形結(jié)合確定m的取值范圍即可得到結(jié)論.
解答: 解:作出不等式組對應(yīng)的平面區(qū)域如圖:(陰影部分ABC).
設(shè)m=3x+4y+3得y=-
3
4
x+
m-3
4
,此時z=|m|,
平移直線y=-
3
4
x+
m-3
4
,
由圖象可知當直線y=-
3
4
x+
m-3
4
經(jīng)過點A時,直線y=-
3
4
x+
m-3
4
的截距最大,此時m最大.
當直線y=-
3
4
x+
m-3
4
經(jīng)過點C時,直線y=-
3
4
x+
m-3
4
的截距最小,此時m最。
x=1
x-4y=-3
,解得
x=1
y=1
,即C(1,1)
代入目標函數(shù)m=3x+4y+3=3+4+3=10,
x-4y=-3
3x+5y=25
,解得
x=5
y=2
,即A(5,2)
代入目標函數(shù)m=3x+4y+3=15+8+3=26,
即10≤m≤26,
則10≤|m|≤26,即10≤z≤26,
則z=|3x+4y+3|的最大值為26,
故答案為:26
點評:本題主要考查線性規(guī)劃的應(yīng)用,結(jié)合目標函數(shù)的幾何意義,利用數(shù)形結(jié)合的數(shù)學思想是解決此類問題的基本方法.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖所示,在△ABC中,AB=AC=3,BC=2,B的平分線交過點A且與BC平行的線交于點D,求△ABD的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
3
x3+
1
2
x2-2x+m的圖象不經(jīng)過第四象限,則實數(shù)m的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若關(guān)于x的方程2x+
8
x
-a=0有正數(shù)根,則實數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若命題p:x+y≠5,命題q:x≠2或y≠3,則命題p是命題q成立的
 
條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}是等差數(shù)列,且a1+a7+a13=2π,則sina7=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果今天是星期一,從明天開始,250天后的第一天是星期
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求函數(shù)y=(sinx+cosx)2+2cos2x的最小正周期=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知log3(2x-1)<1,則x的取值范圍為
 

查看答案和解析>>

同步練習冊答案