20.一個直三棱柱的三視圖如圖所示,其中俯視圖是一個頂角為120°的等腰三角形,則該直三棱柱外接球的表面積為( 。
A.20πB.$\frac{20\sqrt{5}}{3}$πC.25πD.25$\sqrt{5}$π

分析 由已知中的三視圖,求出底面外接圓半徑,球心距,進而求出球半徑,代入球的面積公式,可得答案.

解答 解:由俯視圖是一個頂角為120°,腰長為2的等腰三角形,
故底面外接圓半徑r=2,
由主視圖可得幾何體的高為2,
故球心到底面的距離d=1,
故球半徑R=$\sqrt{5}$,
故該直三棱柱外接球的表面積為20π,
故選:A

點評 本題考查的知識點是由三視圖求體積,球內(nèi)接多面體,求出球的半徑,是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知圓C1:(x-1)2+y2=1,圓C2:(x-3)2+(y-1)2=4,它們的位置關(guān)系是相交.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.關(guān)于x的一元二次方程x2+(m-1)x+1=0在區(qū)間[0,2]上恰有唯一根,則實數(shù)m的取值范圍是(-∞,-$\frac{3}{2}$]∪{-1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=${4}^{x-\frac{1}{2}}$-m•2x-1(0≤x≤2).
(1)若m=2,求函數(shù)f(x)的最大值和最小值;
(2)若f(x)>0對任意x∈[0,2]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)命題p:函數(shù)f(x)=ln$\frac{a+x}{1-x}$是奇函數(shù),命題q:集合A={x||x|≤1,x∈R},B={x||x+2a|≥a,a>0}滿足A⊆B,如果p和q有且僅有一個正確,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>1)的左、上頂點分別為A、B,橢圓C的左焦點為F,且△ABF的面積為$\frac{2-\sqrt{3}}{2}$,則橢圓C的方程為$\frac{{x}^{2}}{4}+{y}^{2}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知直線l1、l2、l3的位置如圖所示,請寫出直線l1、l2、l3的一般式方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知直線l1:x+my+9=0和直線l2:(m-2)x+3y+3m=0,m為何值時,直線l1與l2
(1)重合;
(2)平行;
(3)垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.△ABC中,點M是邊BC的中點,|$\overrightarrow{AB}$|=4,|$\overrightarrow{AC}$|=3,則$\overrightarrow{AM}$•$\overrightarrow{BC}$=$-\frac{7}{2}$.

查看答案和解析>>

同步練習(xí)冊答案