3.函數(shù)f(x)=lg(x-1)+$\sqrt{4-{x}^{2}}$的定義域是( 。
A.[1,2]B.(1,2]C.(1,+∞)D.[-2,2]

分析 由對數(shù)式的真數(shù)大于0,根式內(nèi)部的代數(shù)式大于等于0聯(lián)立不等式組得答案.

解答 解:由$\left\{\begin{array}{l}{x-1>0}\\{4-{x}^{2}≥0}\end{array}\right.$,解得1<x≤2.
∴函數(shù)f(x)=lg(x-1)+$\sqrt{4-{x}^{2}}$的定義域是(1,2].
故選:B.

點評 本題考查函數(shù)的定義域及其求法,是基礎(chǔ)的計算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)函數(shù)f(x)=(x-a)(x-b)(x-c)的導(dǎo)函數(shù)為f′(x),其中a,b.c是互不相等的常數(shù),則f′(a)+f′(b)+f′(c)的值(  )
A.大于0B.小于0C.等于0D.以上都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知圖象連續(xù)不斷的函數(shù)f(x)在區(qū)間(1,2)內(nèi)有一個零點x0,若用二分法求x0的近似值(精確度0.1),則需要將區(qū)間等分的次數(shù)為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)x、y滿足約束條件$\left\{\begin{array}{l}{3x-y-2≤0}\\{x-y≥0}\\{x≥0,y≥0}\end{array}\right.$,若目標(biāo)函數(shù)z=ax+2by(a>0,b>0)的最大值為1,則$\frac{1}{a}$+$\frac{1}$的最小值為( 。
A.3+2$\sqrt{2}$B.3-2$\sqrt{2}$C.8D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)f(x)=ex(lnx-a)(e是自然對數(shù)的底數(shù),e=2.71828…).
(1)若y=f(x)在x=1處的切線方程為y=2ex+b,求a、b的值;
(2)若[$\frac{1}{e}$,e]是y=f(x)的一個單調(diào)遞減區(qū)間,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)f($\sqrt{x}$+1)=x-2$\sqrt{x}$,則f(x)的解析式是f(x)=(x-1)2-4x+3(x≥1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|lo{g}_{2}x|(0<x≤2)}\\{-\frac{1}{2}x+2(x>2)}\end{array}\right.$,若a,b,c互不相等,且f(a)=f(b)=f(c),則abc的取值范圍是( 。
A.(1,4)B.(2,4)C.(0,8)D.(2,8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖(1),在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2.將△ADC沿AC折起,使平面ACD⊥平面ABC,得到幾何體D-ABC,如圖所示(2).

(1)求幾何體D-ABC的體積;
(2)求二面角D-AB-C的正切值;
(3)求幾何體D-ABC的外接球的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)f(x)=mx2+2x-1有且僅有一個正實數(shù)的零點,則實數(shù)m的取值范圍是{-1}∪[0,+∞).

查看答案和解析>>

同步練習(xí)冊答案