20.已知sinα=-$\frac{3}{5}$,α∈($\frac{3}{2}π,2π$),則tanα等于( 。
A.-$\frac{4}{3}$B.$\frac{4}{3}$C.$-\frac{3}{4}$D.$\frac{3}{4}$

分析 由sinα的值,以及α的范圍,利用同角三角函數(shù)間的基本關(guān)系求出cosα的值,即可確定出tanα的值.

解答 解:∵sinα=-$\frac{3}{5}$,α∈($\frac{3}{2}$π,2π),
∴cosα=$\sqrt{1-si{n}^{2}α}$=$\frac{4}{5}$,
則tanα=$\frac{sinα}{cosα}$=-$\frac{3}{4}$,
故選:C.

點(diǎn)評(píng) 此題考查了同角三角函數(shù)基本關(guān)系的運(yùn)用,熟練掌握基本關(guān)系是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.下列函數(shù)中與函數(shù)y=x-1相等的是(  )
A.y=($\sqrt{x-1}$)2B.y=$\root{3}{(x-1)^{3}}$C.y=$\sqrt{(x-1)^{2}}$D.y=$\frac{(x-1)^{2}}{x-1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知正四棱臺(tái)的側(cè)棱長(zhǎng)為3cm,兩底面邊長(zhǎng)分別為2cm和4cm,則該四棱臺(tái)的體積為$\frac{28\sqrt{7}}{3}$cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.若不重合的三條直線相交于一點(diǎn),則它們最多能確定3個(gè)平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知一個(gè)長(zhǎng)方體的長(zhǎng)、寬、高之和為12,對(duì)角線長(zhǎng)為8,那么它的表面積為80.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知角α的終邊在如圖所示的陰影區(qū)域內(nèi).
(1)用弧度制表示角α的集合;
(2)判定$\frac{α}{2}$+$\frac{7π}{12}$是第幾象限角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知f(x)=2x-4x
(1)若x∈[-2,2],求函數(shù)f(x)的值域;
(2)求證:函數(shù)f(x)在區(qū)間(-∞,-1]的單調(diào)遞增.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.集合A={m+$\sqrt{3}$n|m2-3n2=1,且m,n∈Z},試求一個(gè)屬于A的元素a,再求和$\frac{a}{2+\sqrt{3}}$,并判斷它們是否屬于A?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.函數(shù)y=${(\frac{4}{3})}^{-{x}^{2}+2x-3}$的單調(diào)增區(qū)間(-∞,1].

查看答案和解析>>

同步練習(xí)冊(cè)答案