已知f(x)是函數(shù)f(x)=
1
3
x3+5x+3的導(dǎo)數(shù),則f′(-1)=
 
考點(diǎn):導(dǎo)數(shù)的運(yùn)算
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:根據(jù)函數(shù)的導(dǎo)數(shù)公式,直接求導(dǎo)數(shù)即可.
解答: 解:∵f(x)=
1
3
x3+5x+3,
∴f′(x)=x2+5,
則f′(-1)=1+5=6,
故答案為:6
點(diǎn)評:本題主要考查導(dǎo)數(shù)的計算,要求熟練掌握才常見函數(shù)的導(dǎo)數(shù)公式,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖是某算法的程序框圖,當(dāng)輸出的結(jié)果T>100時,整數(shù)s的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x3-mx2+5x+2013在(1,3)上只有一個極值點(diǎn),則實(shí)數(shù)m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出定義:若x∈(m-
1
2
,m+
1
2
](其中m為整數(shù)),則m叫做與實(shí)數(shù)x“親密的整數(shù)”,記作{x}=m,在此基礎(chǔ)上給出下列關(guān)于函數(shù)f(x)=|x-{x}|的四個命題:
①函數(shù)y=f(x)在x∈(0,1)上是增函數(shù);
②函數(shù)y=f(x)的圖象關(guān)于直線x=
k
2
(k∈Z)對稱;
③函數(shù)y=f(x)是周期函數(shù),最小正周期為1;
④當(dāng)x∈(0,2]時,函數(shù)g(x)=f(x)-lnx有兩個零點(diǎn).
其中正確命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩點(diǎn)A(1,0),B(1,
3
),O為坐標(biāo)原點(diǎn),C在第二象限,且∠AOC=60°,設(shè)
OC
=2
OA
OB
,(λ∈R),則λ等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
1-2x
的定義域?yàn)榧螦,函數(shù)y=ln(2x+1)的定義域?yàn)榧螧,則A∩B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

根據(jù)三角恒等變換,可得如下等式:
cosθ=cosθ
cos2θ=2cos2θ-1
cos3θ=4cos3θ-3cosθ
cos4θ=8cos4θ-8cos2θ+1
cos5θ=16cos5θ-20cos3θ+5cosθ
依此規(guī)律,猜測cos6θ=32cos6θ+mcos4θ+ncos2θ-1,其中m+n=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)p:x>2或x≤-5;q:
x+5
2-x
<0,則非q是非p的
 
條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,函數(shù)y=f(x)的圖象在點(diǎn)P(4,f(4))處的切線方程是y=-2x+9,則f(4)+f′(4)的值為
 

查看答案和解析>>

同步練習(xí)冊答案