4.已知數(shù)列{an}滿足a1=3,an+1=2an-n+1(n∈N*).
(1)若bn=an-n(n∈N*),求證數(shù)列{bn}成等比數(shù)列;
(2)設(shè)數(shù)列{an}的前n項(xiàng)之和為Sn,求Sn

分析 (1)由已知得an+1-(n+1)=2an-n+1-n-1=2(an-n),由此能證明數(shù)列{bn}成等比數(shù)列.
(2)由$_{n}={a}_{n}-n={2}^{n}$,得${a}_{n}={2}^{n}+n$,由此利用公組求和法能求出數(shù)列{an}的前n項(xiàng)之和.

解答 證明:(1)∵{an}滿足a1=3,an+1=2an-n+1(n∈N*).
∴an+1-(n+1)=2an-n+1-n-1=2(an-n),(n∈N*
∵bn=an-n(n∈N*),a1-1=2,
∴數(shù)列{bn}成以2為首項(xiàng),以2為公比的等比數(shù)列.
(2)由(1)得$_{n}={a}_{n}-n={2}^{n}$,
∴${a}_{n}={2}^{n}+n$,
∴Sn=(2+22+…+2n)+(1+2+3+…+n)
=$\frac{2(1-{2}^{n})}{1-2}$+$\frac{n(n+1)}{2}$
=${2}^{n+1}-2+\frac{n(n+1)}{2}$.

點(diǎn)評 本題考查等比數(shù)列的證明,考查數(shù)列的通項(xiàng)公式的求法,是中檔題,解題時要認(rèn)真審題,注意構(gòu)造法和分組求和法的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知兩圓C1:(x-1)2+y2=9.C2:(x+1)2+y2=1,動圓在圓C1內(nèi)部且與圓C1相內(nèi)切,與圓C2向外切
(1)求動圓圓心C的軌跡方程;
(2)已知A(-2,0),過A作斜率分別為k1,k2的兩條直線交曲線C于D,E兩點(diǎn),且k1•k2=2,求證:直線DE過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.一條隧道的頂部是拋物拱形,拱高是1.1m,跨度是2.2m,求拱形的拋物線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.函數(shù)f(x)=Asin(ωx+φ)(ω>0,|φ|<π)的部分圖象如圖所示.
(1)求f(x)的解析式;
(2)當(dāng)x∈[4,12]時,求f(x)的值域;
(3)求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.解下列不等式:
(1)log2x>log${\;}_{\frac{1}{4}}$x+3;
(2)log${\;}_{\frac{1}{2}}$(x2-2x-2)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知sinα=$\frac{4}{5}$,α∈($\frac{π}{2}$,π),cosβ=-$\frac{5}{13}$,β是第三象限角,求cos(α-β)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.計(jì)算log26-log224的值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知-$\frac{1}{2}<a<$0,試將下列各數(shù)按大小順序排列:A=1+a2,B=1-a2,C=$\frac{1}{1+a}$,D=$\frac{1}{1-a}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知正方體ABCD-A1B1C1D1中的棱長為8,點(diǎn)H在棱AA1上,且HA1=2,點(diǎn)E、F分別為棱B1C1、C1C的中點(diǎn),P是側(cè)面BCC1B1內(nèi)一動點(diǎn),且滿足PE⊥PF,則當(dāng)點(diǎn)P運(yùn)動時,HP2的最小值是( 。
A.10B.27-6$\sqrt{2}$C.2$\sqrt{21}$D.108-24$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊答案