14.設(shè)數(shù)列{an}的前n項和為Sn.已知$2{S_n}={3^n}+3$.
(Ⅰ)求{an}的通項公式;
(Ⅱ)若數(shù)列{bn}滿足anbn=log3an,{bn}的前n項和Tn
①求Tn;
②若P<Tn<Q對于n∈N*恒成立,求P與Q的范圍.

分析 (I)由$2{S_n}={3^n}+3$.利用遞推關(guān)系可得:an=$\left\{\begin{array}{l}{3,n=1}\\{{3}^{n-1},n≥2}\end{array}\right.$.
(II)anbn=log3an,b1=$\frac{1}{3}$.n≥2時,bn=$\frac{n-1}{{3}^{n-1}}$.利用“錯位相減法”與等比數(shù)列的前n項和公式即可得出.

解答 解:(I)∵$2{S_n}={3^n}+3$.
∴當n=1時,2a1=3+3,解得a1=3;
當n≥2時,$2{S}_{n-1}={3}^{n-1}+3$,∴2an=2×3n-1,解得an=3n-1
∴an=$\left\{\begin{array}{l}{3,n=1}\\{{3}^{n-1},n≥2}\end{array}\right.$.
(II)anbn=log3an,∴b1=$\frac{1}{3}lo{g}_{3}3$=$\frac{1}{3}$.
n≥2時,bn=$\frac{lo{g}_{3}{3}^{n-1}}{{3}^{n-1}}$=$\frac{n-1}{{3}^{n-1}}$.
∴n≥2時,{bn}的前n項和Tn=$\frac{1}{3}$+$\frac{1}{3}+\frac{2}{{3}^{2}}$+…+$\frac{n-1}{{3}^{n-1}}$.
$\frac{1}{3}{T}_{n}$=$\frac{1}{9}$+$\frac{1}{{3}^{2}}+\frac{2}{{3}^{3}}$+…+$\frac{n-2}{{3}^{n-1}}$+$\frac{n-1}{{3}^{n}}$,
可得:$\frac{2}{3}{T}_{n}$=$\frac{2}{9}$+$\frac{1}{3}+\frac{1}{{3}^{2}}$…+$\frac{1}{{3}^{n-1}}$-$\frac{n-1}{{3}^{n}}$=$\frac{2}{9}$+$\frac{\frac{1}{3}(1-\frac{1}{{3}^{n-1}})}{1-\frac{1}{3}}$-$\frac{n-1}{{3}^{n}}$=$\frac{13}{18}$-$\frac{2n+1}{2•{3}^{n}}$,
∴Tn=$\frac{13}{12}$-$\frac{2n+1}{4•{3}^{n-1}}$,當n=1時也成立,
∴${T_n}=\frac{13}{12}-\frac{6n+3}{{4•{3^n}}}$.
②由${T_{n+1}}-{T_n}={b_{n+1}}=n•{3^{-n}}>0$知道Tn遞增,
而${T_1}=\frac{1}{3}$,當$n→+∞,{T_n}→\frac{13}{12}$,
若P<Tn<Q對于n∈N*恒成立,有$P<\frac{1}{3},Q≥\frac{13}{12}$.

點評 本題考查了“錯位相減法”、等比數(shù)列的通項公式與前n項和公式、遞推關(guān)系的應(yīng)用,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

4.已知A(1,2),$\overrightarrow{AC}$=(2,-1),則點C的坐標為(3,1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知點A(4,8)關(guān)于直線l1:x+y=4的對稱點B在拋物線C:y2=2px(p>0)的準線上.
(1)求拋物線C的方程;
(2)直線l2與x軸交于點D,與拋物線C交于E、F兩點. 是否存在定點D,使得$\frac{1}{{D{E^2}}}+\frac{1}{{D{F^2}}}$為定值?若存在,請指出點D的坐標,并求出該定值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.有一個幾何體的正視、側(cè)視、俯視圖分別如圖,則該幾何體的表面積為( 。
A.12πB.24πC.36πD.48π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.在等比數(shù)列{an}中,a4=2,a5=5,則lga1+lga2+…+lga8等于4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.若函數(shù)F(x)=f(x)-2在(-∞,0)內(nèi)有零點,則y=f(x)的圖象可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知α:$a≤x≤a+\frac{1}{2}$,β:1-2a<x<3a+2,若α是β的充分不必要條件,則實數(shù)a的取值范圍是($\frac{1}{3}$,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知△ABC中,cosB=$\frac{12}{13}$,邊c=12$\sqrt{3}$.
(1)若函數(shù)y=3cos2x+sin2x-2$\sqrt{3}$sinxcosx,當x=C時取得最小值,求變a,b的長;
(2)若sin(A-B)=$\frac{3}{5}$,求sinA的值和邊a的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.橢圓$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1上一動點P,圓E:(x-1)2+y2=1,過圓心E任意作一條直線與圓E交于A,B兩點,圓F:(x+1)2+y2=1,過圓心F任意作一條直線與圓F交于C,D兩點,則$\overrightarrow{PA}•\overrightarrow{PB}$+$\overrightarrow{PC}•\overrightarrow{PD}$最小值( 。
A.4B.6C.8D.9

查看答案和解析>>

同步練習冊答案